Cocoon: Building XML Applications

Matthew Langham

Carsten Ziegeler

Publisher: New Riders Publishing
First Edition July 19, 2002
ISBN: 0-7357-1235-2, 504 pages

Cocoon:
Building XML Applicatsons

-
Front Matter Cocoon: Building XML Applications is a comprehensive hands-on guide to
Table of Contents the Apache open source project, Cocoon. Cocoon isan XML publishing
About the Author platform already being used by companies such as Hewlett Packard and
Examples institutions such as NASA to build their next generation of Internet

architectures. Developers, administrators and managers will find this
detailed resource an invaluabl e tool whether you are looking for
introductory information on XML/XSL technologies, starting out with the
open source platform or seeking a guide to extending Cocoon with
additional components.

This book combines the knowledge of a key Cocoon developer with the
experience of someone who has been building and writing about Internet
applications since the early 1990’s. It begins by explaining the advantages
of XML, then guides the reader through the process of setting up Cocoon
and details the architecture from a user’s as well as a developer’s point of
view. The varied examples, from the typical Hello World program to a
complete news portal aso help to provide an insight into applying open
source software to "real world" problems. A detailed reference section
documents the various components available in Cocoon and provides the
developer with the necessary API documentation.

http://safariexamples.informit.com/0735712352/Examples/

Table of Content

TaDIE OF CONTENT ...t sr e 2
ADOUL thE AULNOIS. ...ttt 5
ACKNOWIEAGMENTS.......eiieieiecie ettt e et esreeeesneesseensesneesreeneeens 7
Tell USWhat Y OU ThinK.......ooiiiee et e 8
INEFOTUCTION.....ee ettt sttt e e bbb b ne e e e 9
Who Should Read TRISBOOKcccueiiriiiieie et 9
WhO ThiSBOOK ISNOL FOF.......coiiiiiiiiiisienieseeee s 9
(@7 VT TS 9
Conventions Used in TRISBOOK ..o s 10
Chapter 1. An Introduction to Internet AppPliCaLIONS.........ccooeeieriirieereresee e 11
A Brief History of Internet AppliCalioNS..........coveveieereeie e 11
SCHPLING LANQUAGES.ceueeiieeteeie ettt sttt sbe et st esne e e e 16
APPlICation AFChITECIUIES.......cc.ee et ens 22
The Challenges of Building Internet AppliCations...........ccoevreeneeieneeneeeseeseee 28
Using Cocoon to Meet the Challenges..........ccveveeieiiere e 31
Chapter 2. Building the Machine Web With XML ... 33
[Y AN o o= o] S 33
XML ATTIVES ONthE SCENE.....c.eeiiiiiectie ettt ee s 36
Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT)............ 43
Building XML APPHCALIONSccciiiiriieieeiesiee ettt 50
N 7= L= O oo 1o o S 56
SUMIMIBIY ..ttt st e e et e e be e s s e e sae e eaee e ae e eseeeebe e saseenbeesmneebeesnneanneannnan 58
Chapter 3. Getting Started With COCOON..........ccccveieiiereece e 59
Prerequisites for INStalling COCOON..........coiiiiirieierie e 59
SteP-DY-SEEP INSITUCHIONS......cviciiciccieee et 60
Obtaining a Newer Version of COCOON..........ccooeieireerineenieerie e 67
ONWE GO ...ttt r e e e n e e s e e neennnas 69
Chapter 4. Putting CoCO0N 10 WOTK........ccuriiiiieiieieniesee e 70
(@0 %0 o) o M I8 0 =N =T Kol o T (TS 70
A Closer LOOK at the SIteMEP........coueieeiiiiesieieee e e 78
GEING PraCliCal.......c.ccveieee ettt esae s e e e sreenenneens 88
Advanced Components and EXampPIES..........coceveriiieninie e 119
Sl 00007 TSRS 134
Chapter 5. Cocoon News Portal: ENtry VErSIONccooeeeeieenenieesieesie e 136
WHhiCh Data SOUICES?......ccueeiieieie ettt ettt 136
DeSigNiNg the LAyOUL..........cccoiieiirieiiesieee ettt 138
The Application ArChItECIUIEcceeoeieece e 141
PULtiNg 1t All TOQELNEN ... 143
The Complete ENrY VEISIONcc.cciiiieciecie e seesie e te et 147
Chapter 6. A User’s Look at the Cocoon ArchiteCture..........ccooeeveieenenieeneesieseeens 148
The Cocoon Architecture in Detail ... 148
Advanced SItEmMap FEAIUIES...........cooiiieieeie e 163
Using the Command-Line INterfaCe...........cocvevuvrereere e 182
Practical EXampleS and TipS.....coueereriirieieeie et 184

Wrapping Up the User PErgpective. ... 193

Chapter 7. Cocoon News Portal: Extended VErsion.........ccccecvecereeiesieesecseeseeseeenens 195
Designing the POrtalcoiiiiiieee e 196
Integrating Data Sources into the POrtalcccoecevveie e 199
Building the Portal’ s FUNCLIONAIITYccoeiiiiiiieiece e 202
CloSING thE POMAceeeeeee ettt e ee e e e 216

Chapter 8. A Developer’s Look at the Cocoon Architecture...........ccccevcveveeiieenenne 217
The Avalon Component MOEccoceeiereieeri e 218
SAX BEVENt HaNAIING ..ottt 234
COCOON INEEIMEIScviieiieeeiieee ettt seesaenre s 239
ENOUGN TREOIY ... e 251

Chapter 9. Developing Components for COCOON..........cccveeeieereeieeseerie e seeseeseenaens 252
What Is Needed to Develop Cocoon COMPONENEScccereeriereeneenieseesieeseeseens 252
SItemMaP COMPONENES.....c.ueeieieerieeieeeeseesteeee s e steeseesreesseeaesseesseesesseesseesseesensseenes 253
AdvaNCed COMPONENLS.......couerierieriesieeie e see e sree e sressreseesseesseeeesreeseesneesseesenns 281
Wrapping Up the Developer Perspective...........ccoceeveeeeveciee e e 302

Chapter 10. Cocoon News Portal: Advanced VErSion..........ccccceeereneneneneseseenen 303
Extensible Server Pages (X SP) ..o eee et ste st ese e e 303
Extending the Extended POrtal...........ccooooiiiiiiieneeeseesee e 311
Building the Portal With XSP........ociieecieseeee e 314
AddiNg NEW FEALUINES ..ottt et s re e 320
RUNNING thE POIalcoiveeececee e 323
Concelving and Designing a Cocoon ApPliCation..........ccoceeverieneenenieeneesieseenens 325

Chapter 11. Designing Cocoon APPliCaLIONS.........cccuecereereerieseese e seesee e seesee s 326
The AppPlication CONCEPLcocuiieeeee ettt 327
Different Types of APPIICALIONS.........coovieeriee e 337
SUMMIBIY ...ttt ettt e st ae et e e sae e e abe e eseeease e saeeembeesmeeanseesanesnneasnneenneeas 341

Chapter 12. Cocoon: Weaving the FULUIE.............cccoeieereeie e eeese e ee e 342
The Evolving Cocoon ArChiteCtUre..........cccoeiiieiiiie e 342
COCO0N USAQE SCENAIIOS. ... eeeeeeeeeiieeiesriesieseesseestesseesteseesseessesseesseessesseessesnsesseessens 346
UNFaVveling COCOONcccueiiiieeieeie st siee sttt s e e saeesbe e saeesseesesneeneeas 350

Appendix A. CocOON COMPONENES.......cccveuerreerieeieeseeseeeeseesseessesseesseesseseessessseseens 351
Common Components iN COCOON.XCONE.........cieeririereerieeie e 359

Appendix B. Cocoon APl SPeCITiCatiONS..........cccuveereeiesiereeie e ste e 363
Avalon Framework and LOGKITcoceierieniereeresee e 363
L©0 600 o PSPPSR 383
S X ettt ettt et R e EeeAe Rt Rt R e e ne et et e tenteeteebenneeneeneeneas 436

Appendix C. LINKS ONthe WED.........ccoieeeece et 453
Chapter 1, “An Introduction to Internet Applications”ccocovveerierieneenesiennens 453
Chapter 2, “Building the Machine Web with XML ... 454
Chapter 3, “Getting Started With COCO0N”cccoeiiiiriirieree e 455
Chapter 4, “Putting Coco0N 10 WOIK”ccceeiieiereeieceeseeieseese e see e 456
Chapter 5, “Cocoon News Portal: Entry VErsion”..........ccoceveeinneenesieesessieseeneens 456
Chapter 7, “Cocoon News Portal: Extended Version”c.cccocevveceeveeseseesveennn. 457
Chapter 8, “A Developer’s Look at the Cocoon Architecture”ccccoeeeveenneee. 457
Chapter 9, “Developing Components for COCOON”cccvevuereereeieeseeseeseeneseens 457

Chapter 11, “Designing Cocoon Applications’

About the Authors

a

Matthew L angham was born in England but has lived in Germany since 1976. He has
worked in the IT business since the mid-1980s. He wrote his first book on the Internet in
1993 and has since published severa articles on the Net and related themes. He currently
leads the open-source group at S&N AG, a software company in Paderborn, Germany.

Carsten Ziegeler isthe chief architect of the open-source compe-tence center at S& N
AG, Paderborn, Germany. His main focus is on web application design and
object-oriented component development. He has participated in severa open-source
projects and is actively involved in various Apache communities. In 2001, he took over
the role of release manager for the Apache Cocoon project. He has been a committer on
the project since 2000 and played a major role in designing the current architecture.

About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the entire
development process for Cocoon: Building XML Applications. As this book was being
written, these dedicated professionals reviewed al the material for technical content,
organization, and flow. Their feedback was critical to ensuring that this book fits our
readers needsfor the highest-quality technical information.

Marcus Crafter isfrom Australiaand currently works as a software engineer for a
Melbourne-based company, ManageSoft Corporation. He has worked extensively with
Internet technologies since 1996. He lives in Frankfurt, Germany, where he has been
actively involved in various open-source/free software projects, including Apache
Cocoon, for the past three years.

Torsten Curdt isthe CTO of dff internet & medien GmbH, Gottingen, Germany. He
started out as a programmer in the 1980s and has been active in the IT business since the
early 1990s. As dff’s main software architect, he has been around since Cocoon version
1.7. He became a committer to the Cocoon project in 2001 and isinvolved in severa
other open-source software projects.

Acknowledgments

Writing abook isjust like working on a software project—it’s teamwork. And we had a
great one. So here are the people we would like to thank:

Matthew would like to thank Claudia, Christopher, Victoria, and Nicolas for allowing
him to write the book during “family” time. He would also like to thank Frank and
Holger for getting him started with computers back in the (good old) VIC 20 days.

Carsten would like to thank hiswife, Andrea, for all the support and good words in the
last few months; his parents and parents-in-law for all the help on the new home, which
gave him alot of time for this book; and his brother, Jorg, who influenced Carsten’s
career by buying a Commodore C64 nearly 20 years ago. Special thanks go to Paul
Russell, who started the vote on accepting Carsten as a Cocoon committer, to Giacomo
Pati and Davanum Srinivas for their help during the first steps in Cocoonland, and to the
whole Cocoon community for the interesting “work” every day.

Carsten and Matthew would like to thank Stephanie, Fred, Torsten, Marcus, and all those
involved at New Riders who made this book possible. Thanks also to Bert, Sylvain, and
Andrew for providing last-minute suggestions and corrections. We are very grateful to
Klaus, Josef, and Uwe and all our colleagues at S& N for allowing us to work on open
source and still get paid.

And last but not least, we would both like to thank Stefano for taking that X mas holiday
in the Alps back in 1998.

Tell Us What You Think

Asthe reader of this book, you are the most important critic and commentator. We value
your opinion, and we want to know what we' re doing right, what we could do better,
what areas you'd like to see us publish in, and any other words of wisdom you’ re willing
to pass our way.

As an Executive Editor for the Web Devel opment team at New Riders Publishing, |
welcome your comments. Y ou can fax, email, or write me directly to let me know what
you did or didn’t like about this book, as well as what we can do to make our books
stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail | receive, | might not be able to reply to
every message.

When you write, please be sure to include this book’ s title and author, as well as your
name and phone or fax number. | will carefully review your comments and share them
with the author and editors who worked on the book.

[Fax: 317-581-4663
Email: stephanie.wall @newriders.com
Mail: Stephanie Wall

Executive Editor

New Riders Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

mailto:stephanie.wall@newriders.com

Introduction

Welcome to Cocoon: Building XML Applications. We decided to write this book to
provide additional documentation on the Cocoon open-source project. However, we also
wanted to embed the Cocoon-specific information in amore-general XML application
context. Therefore, we have included information that we hope is helpful for anyone
starting out with XML.

Who Should Read This Book

This book was written for awide audience. If you are currently wondering whether your
application architecture should move to XML, this book provides some answers. Readers
who have aready decided on an XM L-based architecture will find information on
open-source software that will help them build that architecture. The main audienceis
obviously readers who are interested in the open-source XML publishing platform
Cocoon.

Asfor the skill set you need in order to read this book, it is written for both the
guru-developer and the site administrator. If you are more of a manager, you will aso
find interesting information that will help you decide which technology to employ when
building XML applications.

Who This Book Is Not For

If you are totally into Microsoft solutions, perhaps thisis not exactly the right book for
you. Although you will still find helpful information on XML in general, most of this
book centers around open-source software.

Overview

This book begins with an introduction to Internet applications in general and describes
how those applications have been built over the years. It also details the drawbacks of
HTML as abase for modern application architectures and lists the many challenges that
must be met by new Internet-based solutions.

We continue by introducing XML and XML-related technologies as away to build
modern application architectures. The advantages of using XML are listed, and we
introduce availabl e software components. Using a flexible XM L-based framework, such
as Cocoon, allows applications to be built quickly and cost-effectively.

We then explain how to install Cocoon and provide a guide for setting up a
Cocoon-based system. All the needed software is contained on the companion CD.

After you have set up Cocoon, it istime to put some of the basic concepts and
components to work. The first “hands-on” chapter contains different examples that show

you how Cocoon can be used to build various types of XML applications. All the detailed
solutions can be built using the components available in the Cocoon distribution and
without any Java know-how.

Throughout this book, you will build more-advanced solutions in separate chapters. After
each section of the book, you will use what you have learned to build different versions
of anews portal. Each version expands on the previous one and introduces new concepts.

After you build the first version of the news portal, we go into more detail on the Cocoon
architecture, but we still do this from a user perspective. The new concepts are then used
to enhance the portal you developed.

The next two chapters cover Cocoon from a devel oper perspective. They require a
working knowledge of Javain order for you to understand Cocoon’ s inner workings and
how to design new components that can be used to extend the platform.

The chapter that covers the advanced version of the news portal looks at how Cocoon
provides different ways of reaching the same goal and provides some tips on when to use
which technology. This theme is expanded in the following chapter, where we take a step
back from the technical side and provide someinsight into designing applications based
on Cocoon.

The final chapter contains an outlook on Cocoon'’ s future and describes some of the
developments that did not make their way into the release of Cocoon we used when
writing this book.

The appendixes round out the book and provide additional information such as API and
component documentation, links to more information on the web, and a description of the
companion CD.
Conventions Used in This Book
This book follows a few typographical conventions:

e A new term appearsin italic when it is introduced.

e Program text, functions, variables, and other “computer language” are setin a

fixed, monospace font.
e Atthebeginning of aline of codeindicatesit is part of the line aboveit.

10

Chapter 1. An Introduction to Internet Applications

Apart from being something you would normally associate with butterflies or a
Hollywood movie, Cocoon is also the name of an open-source project. It isan
XML/XSL-based framework, written in Java, that enables you to build dynamic Internet
applications, such as the ones that serve up your favorite web pages or give you your
account balance when you access your bank over the Internet or via your mobile phone.

These applications typically lie between the client you are using, such as an Internet
browser, and the systems that provide the data. So an Internet application built with
Cocoon to serve up your account information runs on a system that your browser contacts
and then connects to, say, a mainframe to obtain the necessary details.

Although there are already Internet applications that do all these things, traditional
systems are till unable to solve many problems in an effective manner. Cocoon, because
of its architecture and the technologies it incorporates, provides a better solution for
realizing Internet applications, especially when a high degree of flexibility (both in
publishing and systems integration) is necessary.

The first questions peopl e often ask when confronted with new software products are
“Why?” and “How?” Why do | need yet another product, and how can | useit to solve
my problems? In order to answer the question of why Cocoon is heeded, we must look at
how Internet applications are written today, how they were written in the past, and what
problems modern application architectures still need to solve.

This chapter discusses the history of Internet applications and the key areas that any
Internet solution needs to resolve. We will then introduce you to the world of Cocoon and
show how you can useit to build applications that can range in shape and size from a
simple picture gallery to afull-blown personalized news portal. We will also show you
how to extend Cocoon to meet your specific needs.

But before we go on to what you might be able to do in the future, we need to take alook
at the past.

A Brief History of Internet Applications

11

Even though the popular Internet is still relatively young, dating back to the early 1990s,
the way Internet applications are written has changed considerably over the past decade.

During the time we have been writing about the Internet and writing applications for the
Internet, we have seen it change from an exotic underground “thing” to being a part of
our everyday lives. Internet applications have grown up from being just collections of
static pages and now offer dynamic and personalized solutions. Internet access is no
longer confined to simple browsers but is now available via your phone or car radio.

Currently, our main focus is on software for financial institutions in Germany. Financial
ingtitutions are interesting companies to write software for, because they are very quick to
latch onto new technologies, and they have a diverse base of both software and hardware
to write programs for. They also offer one of the oldest online applications around: online
banking.

Using this application, we will show you how the development of thistype of solution
has changed over the years. In this chapter, our historical journey startsin 1995, the year
before we wrote our first Internet banking solution. (We will take you back even further
intimein Chapter 2, “Building the Machine Web with XML.")

Static Pages

In February of 1995, the most popular server software on the web was the public-domain
HTTP daemon devel oped by Rob McCool at the National Center for Supercomputing
Applications, University of Illinois, Urbana-Champaign. NCSA also developed Mosaic,
one of the first web browsers.

The first Internet applications to go public on these platforms were made up of static
HTML pages. These pages were used to publish unchanging information over the
Internet. Users who could code HTML and knew exactly which data they wanted to
present authored these HTML pages. If the data changed, the HTML pages had to be
completely reauthored and deployed to the web server.

Thefirst generation of web servers (such as Microsoft’s Internet Information Server 1.0)
could serve these pages over the Net, as shown in Figure 1.1, and provided alimited
means of integrating data (such as via a specific database extension called Internet
Database Connection). The first-generation web servers also provided away of passing
requests on to external programs via a standardized interface called CGI. (We will look at
CGl in the next section.)

Figure 1.1. A web server delivers static HTML.

12

Browser

Request Response

Y

Web Server

Receives request
Reads correct HTML file from file
Sends back to client

Static
HTML
Page

7

I 4

Most of the web applications we wrote during this period were more concerned with
showing potential customers what this “web thing” was, so we concentrated on static
HTML with a set layout. Basically, we learned HTML as we went along, so the simple
pages we built contained just the basic tags and the colors that |ooked best on the
particular browser we were using. Fortunately for us, at that time very few programs were
able to present these HTML pages, so no one was yet worried about being able to publish
flexibly for different applications and devices.

Being able to see the pages that had just been deployed to a web server from alocation
that was miles away was a completely new experience for most people. It caused quite a
sensation when it became possible to view information that someone had made available
on the other side of the globe.

Even though at that time mostly static information was being published (at least we were),
it quickly became clear to us that applications such as the online banking solution

German banks already had (of which you will read more in Chapter 2) would eventually
migrate to the Internet world.

At the beginning of 1996, our company decided to attend one of the first online trade
fairsin Hamburg, Germany. Because we had a history of writing software for banks and
had also already worked on online banking projects, it seemed like a good idea to present
an Internet-based version of this application and see what peopl€e’ s reactions would be.

13

Thefirst version of the Internet banking solution we built fit entirely on one floppy disk
(and this included the Netscape browser). Of course, this simple application couldn’t
really do anything. It was more of a presentation in HTML, demonstrat-ing how this sort
of application might look and fedl in the future.

Working in the financial industry means you get to play with lots of interesting hardware,
such as Automatic Teller Machines (ATMSs). In 1996, some ATMs were already
completely PC-based and ran operating systems such as Windows NT. This meant that
they could run a browser such as Netscape just as well as anormal PC or workstation.

So, in Hamburg, we presented our online banking solution running on a desktop PC and
an ATM at the same time. This might seem simple today, but in 1996 it was one of the
first times an application had been used to present the same information over different
channels (aPC and an ATM).

Today, being able to present the same information on different devices at the sametimeis
called multichannel. For corporations, such as banks, it is becoming increasingly
important to provide applications that can be accessed by various devices and
applications. For such companies, each device or application is considered a separate
(sales) channel.

Multichannel solutions, such as online banking via browser or mobile phone, are now
commonplace—and this is one of Cocoon’s key strengths. The multichannel concept that
Cocoon enablesis far more flexible than what we could do in 1996, because it allows the
same information to be presented differently for each separate channel. This means that
you can publish identical datato, say, a PC and a mobile phonein different formats.
Cocoon also allows for such things as the time of day and even the weather to be taken
into consideration when the pages are generated.

Static HTML pages are fine for publishing information that doesn’t change too often, but
they are no good for dynamic information or for use in applications.

For the Internet to become a success as an infrastructure for applications, a more dynamic
way of publishing HTML pages was needed, and the available Internet servers needed to
support this by offering the necessary components and interfaces.

Programmable Components

Thefirst role web servers played was that of afile server. The browser requested a
particular file, and the web server read that file from the hard drive and returned it to the
client. In order to allow the HTML file to be changed or generated dynamically before
being returned, the web server had to provide some way of hooking up to the serving
process.

One way of doing this was by passing the request to an external program by way of a
defined interface. The Common Gateway Interface (CGI) was defined for this purpose,

14

and programs supporting this interface could be written in a variety of languages (such as
Perl or C). CGI has been around almost as long as web servers themselves. It originally
was supported by version 1.0 of the NCSA HTTPD server in 1994. The code from the
NCSA server went on to become the basis of the now-popular Apache web server.

Another alternative was the provision of a defined interface inside the web server for
programmable components (as opposed to applications). Interfaces such as Microsoft’s
ISAPI and Netscape' s NSAPI alowed you to plug your own components (such as
dynamic link libraries, in the Windows world) into the web server.

Because the web server passed the incoming request to either the external application or
the component, it was then possible to generate the resulting HTML page dynamically.
Because the components contained logic and were able to interface with existing data or
applications, thiswas the first step toward building truly dynamic web solutions.

Instead of just being able to serve static pages, the web server now could return pages
that were generated on-the-fly. Each component was then written for a specific purpose
and could handle a defined set of requests. So, for example, a module written to provide
HTML pages containing the current weather situation would receive all the incoming
requests for the weather. Before generating the HTML page, the component would first
access the current weather data from a database and then generate the resulting page to
include exactly that data.

When we decided to write the components to provide an Internet banking solution, we
defined our own templates for each page we wanted to return. Instead of the whole
HTML page being dynamically generated, the component would read in the correct
template and fill in the missing pieces, adding the data it had obtained from the external
banking system to build the page. Figure 1.2 shows how this works.

Figure 1.2. An integrated component generates HTML from a template.

15

Browser

A
Regquest Response
“Wlab Servar
Component
Receives request
Heads template
* Includes data from database
Generates complete HTML
.~
HTML
Template |
Sinclude’:
#databasa# _F‘
Database
I 4

Using the architecture shown in Figure 1.2, we designed one of the first Internet banking
solutionsin Germany and installed it in 1997. That solution was able to integrate
financial data obtained from other sourcesinto HTML templates. The end result was a
complete HTML page that contained your bank account information and provided your
banking transactions to date.

The solution started out running on Microsoft’s 11S 2.0. We were really pleased that we
could generate the HTML output using our own template language. Our HTML generator
even allowed you to script inside those templates, providing smpleif-then-else
combinations. At runtime, our HTML generator interpreted the scripting commands
inside the templates and alowed the HTML to be built, dependent on some data obtained
for the customer. A ssimple example was to format the account balance in red if the value
was negative.

Because at that time none of the web servers provided a standardized way of writing
templates and scripts, we wrote our own little scripting language. Of course, the
disadvantage was that only our component could understand the language, and that
component ran on only a specific vendor’s web server. But al in al, it worked quite well.
The solution we wrote in 1997 was not replaced until the middle of 2001, even though
other alternatives of writing Internet applications appeared soon after we installed our
first version.

Scripting Languages

16

About two days after we installed the solution in 1997, Microsoft released the first
version of its Active Server Pages (ASP) technology. The world of building Internet
applications changed abruptly.

In addition to allowing programmable components to be integrated, the servers began
providing for scripting languages. Scripting languages such as Microsoft’s ASP and the
Java-based Java Server Pages (JSP) were developed to allow HTML to be generated
on-the-fly as opposed to being served from a static file.

These scripting languages became very popular, and many of today’ s Internet
applications are written using one of them.

These languages allow you to author your page, including scripting commands that
control how the resulting HTML page is built. Because these scripting languages are
edited in normal text files and do not need to be compiled by the author, they have
opened up the world of web applications to people who would not normally write
software.

Writing a script using alanguage such as JSP means that any web server that supports
JSP, either itself or by way of an additional component, is able to understand that script
and process it to build the resulting HTML page. Figure 1.3 shows how scripting can be
used inside an Internet application architecture.

Figure 1.3. Standardized scripting allows dynamic HTML generation.

17

Browser

[
Regquest Response
v Web Sarver
Scripting Engine
Receives request
Heads template
* Includes data from database
Generates complete HTML
F 3
Standardized |
Scripting
Templatas
7
Database
I 4

This means that the templates can be shared between servers running the same scripting
engine. Internet applications written in thisway basically consist of alibrary of scripts.
The web server maps each request to a particular script at runtime.

In itself, just being able to control how the page is built is not enough to be able to build
dynamic applications that incorporate data from external systems. Therefore, each of the
different scripting languages provides some way of accessing such things as a database or
of keeping track of who is currently accessing the site and using the online banking
application.

By the end of 1997, it became clear to us that any further versions of our online banking
solution needed to be based on one of these scripting technologies. Therefore, in 1998 we
started to design and build the next version of our Internet banking platform—using ASP.

That solution allowed the dynamic creation of HTML pages using scripting templates.
The customer’ s account information was integrated into the HTML pages by way of
specific components that accessed the mainframe and returned the data needed. The way
these components were written allowed them to be easily integrated into the scripting
process.

On the whole, using ASP made it easier to write the new version of the online banking

application, but unfortunately, other things were going on that gave us quite afew
headaches.

18

Starting in late 1996 and continuing until well into 1999, Microsoft and Netscape fought
the “browser wars.” This meant that new versions of both programs were released nearly
every week (at least, it seemed likeit). It didn’t really affect us until we actually had to
write applications to support the different versions. When we started planning the online
banking solution for our customer, the Microsoft browser version we were supposed to
support was Internet Explorer (IE) 3.0. During the time the application was written, new
versions appeared and had to be supported inside our solution. When the application went
into production, the newest |E version was 5.0.

Our headaches were caused by the fact that each browser vendor had (and perhaps il
has) a unique view of what correct HTML should look like. Even different versions of the
same browser did not render HTML in the same way. Thefirst versions of our

application could not be displayed on some of the available browsers because of these
differences.

There was only one way to get around this problem, and that was for the scripting inside
the ASP pagesto allow for these different versions. Luckily, browsers send a piece of
information to the server, telling who they actually are. Thisinformation includes the
name and version number. Thisinformation can then be interpreted by the server
application.

However, this also meant that our ASP pages became riddled with browser-specific
commands. Depending on the browser type or version, different HTML fragments had to
be generated into the finished page. This caused the whole solution to become very hard
to maintain and extend. Listing 1.1 shows what the ASP then looked like. In this case, a
specific function was added to the generated page if Netscape version 4 was being used.

Listing 1.1 Sample ASP Code

<% iIf Session("'browsername'™) = "Netscape' and
Left(Session(""browserversion'™), 1) = "4"™ then %>
function button_Print() {
window.print();

}

<% end if %>

Every time anew browser version appeared, it had to be incorporated into the scriptsto
be sure it received the HTML it could render. This approach works, but it is not easy to
extend and maintain. It is also not very flexible, because each time you want to change
something for a particular browser, you have to make sure there areno side effects.

Flexible Publishing
The scripting approach works well when you are serving information in only one format
to one particular device or application. When you decide to serve the same datainto a

different format, such as Wireless Markup Language (WML) for mobile phones, then you
are faced with the problem of rewriting the application to provide for this new format.

19

When the customer who was running our first Internet banking application decided to
support mobile phones, they had a completely new application developed. This
application was written with the specific goal of serving data, scraped out of the
generated HTML pages into the WML format required by phones. Indeed, many content
providers did exactly this when using mobile phonesto surf the Net started becoming
popular, especially in Europe and Japan. Because of the way applications were being
developed—and, for the most part, still are today—each different format is thought of as
requiring a separate application.

Another drawback—and perhaps even worse—is the fact that the scripting approach does
not help you truly separate the layout design from the data you want to display. The same
people responsible for laying out the graphical design of the HTML page are forced to
know about the data and how to access it. Also, because of the way script pages are
integrated into the software that hosts them, the same person has to worry about the
architecture of the complete application.

Aswe saw from the way we were building applications based on ASP, the same person
who authored the code to access the data from inside those pages was designing the pages.
Apart from how the pages were filling up with the specific commands we mentioned
earlier, it became increasingly difficult to maintain acommon look and feel for the whole
application, because the different authors were changing the look of the pages they
worked on.

Some scripting languages support the use of libraries of reusable code—and this does
help when large applications are built. However, when we looked at some of these
libraries being used by ourselves and also by our customers, we found that not only was
code being put into them, but the look and feel was contained in the code libraries as well.
So, what in fact was happening was that portions of the complete page were being stored,
making it just as hard to adapt the code for new formats.

Another problem is maintaining sites written in scripting languages. Imagine a
mission-critical application that contains perhaps 200 separate script pages. As soon asit
isin production, the application doesn’t suddenly stop existing. It is constantly extended
and bug-fixed. New versions are released as new functions in the application become
available. How do you manage to rescript the application for a new format such asWML
without affecting the stability you might have already achieved?

Thisis exactly the situation in which we found ourselvesin 1999.

During that summer, our customer told us that they wanted to be the first bank in
Germany to support mobile phones and Personal Digital Assistants (PDAS) using WML.
Even though WML was written for mobile phones, the PDAs adopted this format as well
because it was easier for the software to display than HTML. This made us take a step
back from the way we had designed Internet solutions up to that point. At that time,
supporting the various browsers in the different types of mobile phones was far harder
than supporting the leading PC browsers.

20

We took aclose look at this upcoming “standard” of WML and the “standard” devices
that were slowly emerging. After we tested against a couple of the available phones and
PDAS, it quickly became clear that the situation was far worse than we had imagined.

At that time, very few phones supported WML and the underlying Wireless Access
Protocol (WAP) technology, but many mobile-phone vendors had announced their
support in upcoming versions. In addition to those on the market, we obtained a couple of
preproduction devices and tested those against the WML standard.

Because WAP was a hyped technology and everybody was rushing to jump on the
bandwagon, there were large differences in how the WML format was displayed. Some
phones displayed input fields on the same line as their label; other phones broke up the
flow of aform by putting the label and input field on two separate lines.

The hype went so far that one mobile-phone vendor released its new model with a
version of WAP that actually was never supported by the phone companies. Add to all
this the difference in screen layout and size between mobile phones and PDAS such as the
Palm, and we quickly decided that in no way did we want to fit all the WML code to
handle al thisinto the completed, tested, and running A SP pages.

At roughly the same time (having had our interest ignited after visiting XML talks at the
1999 JavaOne conference in San Francisco), we started checking out the possibilities of
XML and XSL technologies. The interesting thing about XML and XSL was the fact that
they were being adopted by nearly everyone who was anyone. Microsoft had initial
versions of these components available, and IBM and other Java vendors were hard at
work on their own versions.

Although we had yet to get our hands dirty by actually implementing an application using
XML and XSL, we could see that this might be a way to solve our problems.

So we decided to implement the WML solution using XML and XSL components from
Microsoft. We started out by defining exactly which data we wanted to present. Thiswas
not too difficult because the WML part was to be integrated into the running online
banking solution. The application already consisted of the components that provided the
data. We then developed a single ASP page that accessed the data and built an XML
format using the available parser. When the XML datawas available, it was transformed
into WML using the correct XSL style sheet.

(If you are not familiar with al these components, don’t worry; we will explain the
detailsin Chapter 2.)

And it w