
 1

Front Matter
Table of Contents
About the Author
Examples

Cocoon: Building XML Applications

Matthew Langham
Carsten Ziegeler
Publisher: New Riders Publishing
First Edition July 19, 2002
ISBN: 0-7357-1235-2, 504 pages

Cocoon: Building XML Applications is a comprehensive hands-on guide to
the Apache open source project, Cocoon. Cocoon is an XML publishing
platform already being used by companies such as Hewlett Packard and
institutions such as NASA to build their next generation of Internet
architectures. Developers, administrators and managers will find this
detailed resource an invaluable tool whether you are looking for
introductory information on XML/XSL technologies, starting out with the
open source platform or seeking a guide to extending Cocoon with
additional components.

This book combines the knowledge of a key Cocoon developer with the
experience of someone who has been building and writing about Internet
applications since the early 1990’s. It begins by explaining the advantages
of XML, then guides the reader through the process of setting up Cocoon
and details the architecture from a user’s as well as a developer’s point of
view. The varied examples, from the typical Hello World program to a
complete news portal also help to provide an insight into applying open
source software to "real world" problems. A detailed reference section
documents the various components available in Cocoon and provides the
developer with the necessary API documentation.

http://safariexamples.informit.com/0735712352/Examples/

 2

Table of Content
Table of Content ... 2
About the Authors... 5
Acknowledgments... 7
Tell Us What You Think... 8
Introduction... 9

Who Should Read This Book ... 9
Who This Book Is Not For.. 9
Overview... 9
Conventions Used in This Book ... 10

Chapter 1. An Introduction to Internet Applications .. 11
A Brief History of Internet Applications .. 11
Scripting Languages.. 16
Application Architectures ... 22
The Challenges of Building Internet Applications ... 28
Using Cocoon to Meet the Challenges.. 31

Chapter 2. Building the Machine Web with XML ... 33
HTML Applications.. 33
XML Arrives on the Scene ... 36
Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT)............ 43
Building XML Applications ... 50
Apache Cocoon... 56
Summary... 58

Chapter 3. Getting Started with Cocoon... 59
Prerequisites for Installing Cocoon... 59
Step-by-Step Instructions.. 60
Obtaining a Newer Version of Cocoon... 67
On We Go ... 69

Chapter 4. Putting Cocoon to Work.. 70
Cocoon: The Big Picture... 70
A Closer Look at the Sitemap... 78
Getting Practical.. 88
Advanced Components and Examples.. 119
Summary... 134

Chapter 5. Cocoon News Portal: Entry Version ... 136
Which Data Sources?.. 136
Designing the Layout.. 138
The Application Architecture ... 141
Putting It All Together .. 143
The Complete Entry Version .. 147

Chapter 6. A User’s Look at the Cocoon Architecture... 148
The Cocoon Architecture in Detail ... 148
Advanced Sitemap Features.. 163
Using the Command-Line Interface.. 182
Practical Examples and Tips... 184

 3

Wrapping Up the User Perspective... 193
Chapter 7. Cocoon News Portal: Extended Version... 195

Designing the Portal.. 196
Integrating Data Sources into the Portal ... 199
Building the Portal’s Functionality... 202
Closing the Portal.. 216

Chapter 8. A Developer’s Look at the Cocoon Architecture...................................... 217
The Avalon Component Model .. 218
SAX Event Handling .. 234
Cocoon Internals ... 239
Enough Theory.. 251

Chapter 9. Developing Components for Cocoon.. 252
What Is Needed to Develop Cocoon Components ... 252
Sitemap Components .. 253
Advanced Components ... 281
Wrapping Up the Developer Perspective.. 302

Chapter 10. Cocoon News Portal: Advanced Version.. 303
Extensible Server Pages (XSP)... 303
Extending the Extended Portal.. 311
Building the Portal with XSP.. 314
Adding New Features ... 320
Running the Portal .. 323
Conceiving and Designing a Cocoon Application.. 325

Chapter 11. Designing Cocoon Applications.. 326
The Application Concept .. 327
Different Types of Applications ... 337
Summary... 341

Chapter 12. Cocoon: Weaving the Future... 342
The Evolving Cocoon Architecture .. 342
Cocoon Usage Scenarios... 346
Unraveling Cocoon ... 350

Appendix A. Cocoon Components ... 351
Common Components in cocoon.xconf.. 359

Appendix B. Cocoon API Specifications.. 363
Avalon Framework and LogKit .. 363
Cocoon .. 383
SAX... 436

Appendix C. Links on the Web... 453
Chapter 1, “An Introduction to Internet Applications”... 453
Chapter 2, “Building the Machine Web with XML”.. 454
Chapter 3, “Getting Started with Cocoon” ... 455
Chapter 4, “Putting Cocoon to Work” .. 456
Chapter 5, “Cocoon News Portal: Entry Version”.. 456
Chapter 7, “Cocoon News Portal: Extended Version” ... 457
Chapter 8, “A Developer’s Look at the Cocoon Architecture” 457
Chapter 9, “Developing Components for Cocoon” .. 457

 4

Chapter 11, “Designing Cocoon Applications” .. 458

 5

About the Authors

Matthew Langham was born in England but has lived in Germany since 1976. He has
worked in the IT business since the mid-1980s. He wrote his first book on the Internet in
1993 and has since published several articles on the Net and related themes. He currently
leads the open-source group at S&N AG, a software company in Paderborn, Germany.

Carsten Ziegeler is the chief architect of the open-source compe-tence center at S&N
AG, Paderborn, Germany. His main focus is on web application design and
object-oriented component development. He has participated in several open-source
projects and is actively involved in various Apache communities. In 2001, he took over
the role of release manager for the Apache Cocoon project. He has been a committer on
the project since 2000 and played a major role in designing the current architecture.

About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the entire
development process for Cocoon: Building XML Applications. As this book was being
written, these dedicated professionals reviewed all the material for technical content,
organization, and flow. Their feedback was critical to ensuring that this book fits our
readers’ needs for the highest-quality technical information.

 6

Marcus Crafter is from Australia and currently works as a software engineer for a
Melbourne-based company, ManageSoft Corporation. He has worked extensively with
Internet technologies since 1996. He lives in Frankfurt, Germany, where he has been
actively involved in various open-source/free software projects, including Apache
Cocoon, for the past three years.

Torsten Curdt is the CTO of dff internet & medien GmbH, Göttingen, Germany. He
started out as a programmer in the 1980s and has been active in the IT business since the
early 1990s. As dff’s main software architect, he has been around since Cocoon version
1.7. He became a committer to the Cocoon project in 2001 and is involved in several
other open-source software projects.

 7

Acknowledgments

Writing a book is just like working on a software project—it’s teamwork. And we had a
great one. So here are the people we would like to thank:

Matthew would like to thank Claudia, Christopher, Victoria, and Nicolas for allowing
him to write the book during “family” time. He would also like to thank Frank and
Holger for getting him started with computers back in the (good old) VIC 20 days.

Carsten would like to thank his wife, Andrea, for all the support and good words in the
last few months; his parents and parents-in-law for all the help on the new home, which
gave him a lot of time for this book; and his brother, Jörg, who influenced Carsten’s
career by buying a Commodore C64 nearly 20 years ago. Special thanks go to Paul
Russell, who started the vote on accepting Carsten as a Cocoon committer, to Giacomo
Pati and Davanum Srinivas for their help during the first steps in Cocoonland, and to the
whole Cocoon community for the interesting “work” every day.

Carsten and Matthew would like to thank Stephanie, Fred, Torsten, Marcus, and all those
involved at New Riders who made this book possible. Thanks also to Bert, Sylvain, and
Andrew for providing last-minute suggestions and corrections. We are very grateful to
Klaus, Josef, and Uwe and all our colleagues at S&N for allowing us to work on open
source and still get paid.

And last but not least, we would both like to thank Stefano for taking that Xmas holiday
in the Alps back in 1998.

 8

Tell Us What You Think

As the reader of this book, you are the most important critic and commentator. We value
your opinion, and we want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re willing
to pass our way.

As an Executive Editor for the Web Development team at New Riders Publishing, I
welcome your comments. You can fax, email, or write me directly to let me know what
you did or didn’t like about this book, as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author, as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4663
Email: stephanie.wall@newriders.com
Mail: Stephanie Wall

Executive Editor
New Riders Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

mailto:stephanie.wall@newriders.com

 9

Introduction

Welcome to Cocoon: Building XML Applications. We decided to write this book to
provide additional documentation on the Cocoon open-source project. However, we also
wanted to embed the Cocoon-specific information in a more-general XML application
context. Therefore, we have included information that we hope is helpful for anyone
starting out with XML.

Who Should Read This Book

This book was written for a wide audience. If you are currently wondering whether your
application architecture should move to XML, this book provides some answers. Readers
who have already decided on an XML-based architecture will find information on
open-source software that will help them build that architecture. The main audience is
obviously readers who are interested in the open-source XML publishing platform
Cocoon.

As for the skill set you need in order to read this book, it is written for both the
guru-developer and the site administrator. If you are more of a manager, you will also
find interesting information that will help you decide which technology to employ when
building XML applications.

Who This Book Is Not For

If you are totally into Microsoft solutions, perhaps this is not exactly the right book for
you. Although you will still find helpful information on XML in general, most of this
book centers around open-source software.

Overview

This book begins with an introduction to Internet applications in general and describes
how those applications have been built over the years. It also details the drawbacks of
HTML as a base for modern application architectures and lists the many challenges that
must be met by new Internet-based solutions.

We continue by introducing XML and XML-related technologies as a way to build
modern application architectures. The advantages of using XML are listed, and we
introduce available software components. Using a flexible XML-based framework, such
as Cocoon, allows applications to be built quickly and cost-effectively.

We then explain how to install Cocoon and provide a guide for setting up a
Cocoon-based system. All the needed software is contained on the companion CD.

After you have set up Cocoon, it is time to put some of the basic concepts and
components to work. The first “hands-on” chapter contains different examples that show

 10

you how Cocoon can be used to build various types of XML applications. All the detailed
solutions can be built using the components available in the Cocoon distribution and
without any Java know-how.

Throughout this book, you will build more-advanced solutions in separate chapters. After
each section of the book, you will use what you have learned to build different versions
of a news portal. Each version expands on the previous one and introduces new concepts.

After you build the first version of the news portal, we go into more detail on the Cocoon
architecture, but we still do this from a user perspective. The new concepts are then used
to enhance the portal you developed.

The next two chapters cover Cocoon from a developer perspective. They require a
working knowledge of Java in order for you to understand Cocoon’s inner workings and
how to design new components that can be used to extend the platform.

The chapter that covers the advanced version of the news portal looks at how Cocoon
provides different ways of reaching the same goal and provides some tips on when to use
which technology. This theme is expanded in the following chapter, where we take a step
back from the technical side and provide some insight into designing applications based
on Cocoon.

The final chapter contains an outlook on Cocoon’s future and describes some of the
developments that did not make their way into the release of Cocoon we used when
writing this book.

The appendixes round out the book and provide additional information such as API and
component documentation, links to more information on the web, and a description of the
companion CD.

Conventions Used in This Book

This book follows a few typographical conventions:

• A new term appears in italic when it is introduced.
• Program text, functions, variables, and other “computer language” are set in a

fixed, monospace font.
• At the beginning of a line of code indicates it is part of the line above it.

 11

Chapter 1. An Introduction to Internet Applications

Apart from being something you would normally associate with butterflies or a
Hollywood movie, Cocoon is also the name of an open-source project. It is an
XML/XSL-based framework, written in Java, that enables you to build dynamic Internet
applications, such as the ones that serve up your favorite web pages or give you your
account balance when you access your bank over the Internet or via your mobile phone.

These applications typically lie between the client you are using, such as an Internet
browser, and the systems that provide the data. So an Internet application built with
Cocoon to serve up your account information runs on a system that your browser contacts
and then connects to, say, a mainframe to obtain the necessary details.

Although there are already Internet applications that do all these things, traditional
systems are still unable to solve many problems in an effective manner. Cocoon, because
of its architecture and the technologies it incorporates, provides a better solution for
realizing Internet applications, especially when a high degree of flexibility (both in
publishing and systems integration) is necessary.

The first questions people often ask when confronted with new software products are
“Why?” and “How?” Why do I need yet another product, and how can I use it to solve
my problems? In order to answer the question of why Cocoon is needed, we must look at
how Internet applications are written today, how they were written in the past, and what
problems modern application architectures still need to solve.

This chapter discusses the history of Internet applications and the key areas that any
Internet solution needs to resolve. We will then introduce you to the world of Cocoon and
show how you can use it to build applications that can range in shape and size from a
simple picture gallery to a full-blown personalized news portal. We will also show you
how to extend Cocoon to meet your specific needs.

But before we go on to what you might be able to do in the future, we need to take a look
at the past.

A Brief History of Internet Applications

 12

Even though the popular Internet is still relatively young, dating back to the early 1990s,
the way Internet applications are written has changed considerably over the past decade.

During the time we have been writing about the Internet and writing applications for the
Internet, we have seen it change from an exotic underground “thing” to being a part of
our everyday lives. Internet applications have grown up from being just collections of
static pages and now offer dynamic and personalized solutions. Internet access is no
longer confined to simple browsers but is now available via your phone or car radio.

Currently, our main focus is on software for financial institutions in Germany. Financial
institutions are interesting companies to write software for, because they are very quick to
latch onto new technologies, and they have a diverse base of both software and hardware
to write programs for. They also offer one of the oldest online applications around: online
banking.

Using this application, we will show you how the development of this type of solution
has changed over the years. In this chapter, our historical journey starts in 1995, the year
before we wrote our first Internet banking solution. (We will take you back even further
in time in Chapter 2, “Building the Machine Web with XML.”)

Static Pages

In February of 1995, the most popular server software on the web was the public-domain
HTTP daemon developed by Rob McCool at the National Center for Supercomputing
Applications, University of Illinois, Urbana-Champaign. NCSA also developed Mosaic,
one of the first web browsers.

The first Internet applications to go public on these platforms were made up of static
HTML pages. These pages were used to publish unchanging information over the
Internet. Users who could code HTML and knew exactly which data they wanted to
present authored these HTML pages. If the data changed, the HTML pages had to be
completely reauthored and deployed to the web server.

The first generation of web servers (such as Microsoft’s Internet Information Server 1.0)
could serve these pages over the Net, as shown in Figure 1.1, and provided a limited
means of integrating data (such as via a specific database extension called Internet
Database Connection). The first-generation web servers also provided a way of passing
requests on to external programs via a standardized interface called CGI. (We will look at
CGI in the next section.)

Figure 1.1. A web server delivers static HTML.

 13

Most of the web applications we wrote during this period were more concerned with
showing potential customers what this “web thing” was, so we concentrated on static
HTML with a set layout. Basically, we learned HTML as we went along, so the simple
pages we built contained just the basic tags and the colors that looked best on the
particular browser we were using. Fortunately for us, at that time very few programs were
able to present these HTML pages, so no one was yet worried about being able to publish
flexibly for different applications and devices.

Being able to see the pages that had just been deployed to a web server from a location
that was miles away was a completely new experience for most people. It caused quite a
sensation when it became possible to view information that someone had made available
on the other side of the globe.

Even though at that time mostly static information was being published (at least we were),
it quickly became clear to us that applications such as the online banking solution
German banks already had (of which you will read more in Chapter 2) would eventually
migrate to the Internet world.

At the beginning of 1996, our company decided to attend one of the first online trade
fairs in Hamburg, Germany. Because we had a history of writing software for banks and
had also already worked on online banking projects, it seemed like a good idea to present
an Internet-based version of this application and see what people’s reactions would be.

 14

The first version of the Internet banking solution we built fit entirely on one floppy disk
(and this included the Netscape browser). Of course, this simple application couldn’t
really do anything. It was more of a presentation in HTML, demonstrat-ing how this sort
of application might look and feel in the future.

Working in the financial industry means you get to play with lots of interesting hardware,
such as Automatic Teller Machines (ATMs). In 1996, some ATMs were already
completely PC-based and ran operating systems such as Windows NT. This meant that
they could run a browser such as Netscape just as well as a normal PC or workstation.

So, in Hamburg, we presented our online banking solution running on a desktop PC and
an ATM at the same time. This might seem simple today, but in 1996 it was one of the
first times an application had been used to present the same information over different
channels (a PC and an ATM).

Today, being able to present the same information on different devices at the same time is
called multichannel. For corporations, such as banks, it is becoming increasingly
important to provide applications that can be accessed by various devices and
applications. For such companies, each device or application is considered a separate
(sales) channel.

Multichannel solutions, such as online banking via browser or mobile phone, are now
commonplace—and this is one of Cocoon’s key strengths. The multichannel concept that
Cocoon enables is far more flexible than what we could do in 1996, because it allows the
same information to be presented differently for each separate channel. This means that
you can publish identical data to, say, a PC and a mobile phone in different formats.
Cocoon also allows for such things as the time of day and even the weather to be taken
into consideration when the pages are generated.

Static HTML pages are fine for publishing information that doesn’t change too often, but
they are no good for dynamic information or for use in applications.

For the Internet to become a success as an infrastructure for applications, a more dynamic
way of publishing HTML pages was needed, and the available Internet servers needed to
support this by offering the necessary components and interfaces.

Programmable Components

The first role web servers played was that of a file server. The browser requested a
particular file, and the web server read that file from the hard drive and returned it to the
client. In order to allow the HTML file to be changed or generated dynamically before
being returned, the web server had to provide some way of hooking up to the serving
process.

One way of doing this was by passing the request to an external program by way of a
defined interface. The Common Gateway Interface (CGI) was defined for this purpose,

 15

and programs supporting this interface could be written in a variety of languages (such as
Perl or C). CGI has been around almost as long as web servers themselves. It originally
was supported by version 1.0 of the NCSA HTTPD server in 1994. The code from the
NCSA server went on to become the basis of the now-popular Apache web server.

Another alternative was the provision of a defined interface inside the web server for
programmable components (as opposed to applications). Interfaces such as Microsoft’s
ISAPI and Netscape’s NSAPI allowed you to plug your own components (such as
dynamic link libraries, in the Windows world) into the web server.

Because the web server passed the incoming request to either the external application or
the component, it was then possible to generate the resulting HTML page dynamically.
Because the components contained logic and were able to interface with existing data or
applications, this was the first step toward building truly dynamic web solutions.

Instead of just being able to serve static pages, the web server now could return pages
that were generated on-the-fly. Each component was then written for a specific purpose
and could handle a defined set of requests. So, for example, a module written to provide
HTML pages containing the current weather situation would receive all the incoming
requests for the weather. Before generating the HTML page, the component would first
access the current weather data from a database and then generate the resulting page to
include exactly that data.

When we decided to write the components to provide an Internet banking solution, we
defined our own templates for each page we wanted to return. Instead of the whole
HTML page being dynamically generated, the component would read in the correct
template and fill in the missing pieces, adding the data it had obtained from the external
banking system to build the page. Figure 1.2 shows how this works.

Figure 1.2. An integrated component generates HTML from a template.

 16

Using the architecture shown in Figure 1.2, we designed one of the first Internet banking
solutions in Germany and installed it in 1997. That solution was able to integrate
financial data obtained from other sources into HTML templates. The end result was a
complete HTML page that contained your bank account information and provided your
banking transactions to date.

The solution started out running on Microsoft’s IIS 2.0. We were really pleased that we
could generate the HTML output using our own template language. Our HTML generator
even allowed you to script inside those templates, providing simple if-then-else
combinations. At runtime, our HTML generator interpreted the scripting commands
inside the templates and allowed the HTML to be built, dependent on some data obtained
for the customer. A simple example was to format the account balance in red if the value
was negative.

Because at that time none of the web servers provided a standardized way of writing
templates and scripts, we wrote our own little scripting language. Of course, the
disadvantage was that only our component could understand the language, and that
component ran on only a specific vendor’s web server. But all in all, it worked quite well.
The solution we wrote in 1997 was not replaced until the middle of 2001, even though
other alternatives of writing Internet applications appeared soon after we installed our
first version.

Scripting Languages

 17

About two days after we installed the solution in 1997, Microsoft released the first
version of its Active Server Pages (ASP) technology. The world of building Internet
applications changed abruptly.

In addition to allowing programmable components to be integrated, the servers began
providing for scripting languages. Scripting languages such as Microsoft’s ASP and the
Java-based Java Server Pages (JSP) were developed to allow HTML to be generated
on-the-fly as opposed to being served from a static file.

These scripting languages became very popular, and many of today’s Internet
applications are written using one of them.

These languages allow you to author your page, including scripting commands that
control how the resulting HTML page is built. Because these scripting languages are
edited in normal text files and do not need to be compiled by the author, they have
opened up the world of web applications to people who would not normally write
software.

Writing a script using a language such as JSP means that any web server that supports
JSP, either itself or by way of an additional component, is able to understand that script
and process it to build the resulting HTML page. Figure 1.3 shows how scripting can be
used inside an Internet application architecture.

Figure 1.3. Standardized scripting allows dynamic HTML generation.

 18

This means that the templates can be shared between servers running the same scripting
engine. Internet applications written in this way basically consist of a library of scripts.
The web server maps each request to a particular script at runtime.

In itself, just being able to control how the page is built is not enough to be able to build
dynamic applications that incorporate data from external systems. Therefore, each of the
different scripting languages provides some way of accessing such things as a database or
of keeping track of who is currently accessing the site and using the online banking
application.

By the end of 1997, it became clear to us that any further versions of our online banking
solution needed to be based on one of these scripting technologies. Therefore, in 1998 we
started to design and build the next version of our Internet banking platform—using ASP.

That solution allowed the dynamic creation of HTML pages using scripting templates.
The customer’s account information was integrated into the HTML pages by way of
specific components that accessed the mainframe and returned the data needed. The way
these components were written allowed them to be easily integrated into the scripting
process.

On the whole, using ASP made it easier to write the new version of the online banking
application, but unfortunately, other things were going on that gave us quite a few
headaches.

 19

Starting in late 1996 and continuing until well into 1999, Microsoft and Netscape fought
the “browser wars.” This meant that new versions of both programs were released nearly
every week (at least, it seemed like it). It didn’t really affect us until we actually had to
write applications to support the different versions. When we started planning the online
banking solution for our customer, the Microsoft browser version we were supposed to
support was Internet Explorer (IE) 3.0. During the time the application was written, new
versions appeared and had to be supported inside our solution. When the application went
into production, the newest IE version was 5.0.

Our headaches were caused by the fact that each browser vendor had (and perhaps still
has) a unique view of what correct HTML should look like. Even different versions of the
same browser did not render HTML in the same way. The first versions of our
application could not be displayed on some of the available browsers because of these
differences.

There was only one way to get around this problem, and that was for the scripting inside
the ASP pages to allow for these different versions. Luckily, browsers send a piece of
information to the server, telling who they actually are. This information includes the
name and version number. This information can then be interpreted by the server
application.

However, this also meant that our ASP pages became riddled with browser-specific
commands. Depending on the browser type or version, different HTML fragments had to
be generated into the finished page. This caused the whole solution to become very hard
to maintain and extend. Listing 1.1 shows what the ASP then looked like. In this case, a
specific function was added to the generated page if Netscape version 4 was being used.

Listing 1.1 Sample ASP Code

<% if Session("browsername") = "Netscape" and
Left(Session("browserversion"), 1) = "4" then %>

 function button_Print() {
 window.print();
}

<% end if %>

Every time a new browser version appeared, it had to be incorporated into the scripts to
be sure it received the HTML it could render. This approach works, but it is not easy to
extend and maintain. It is also not very flexible, because each time you want to change
something for a particular browser, you have to make sure there areno side effects.

Flexible Publishing

The scripting approach works well when you are serving information in only one format
to one particular device or application. When you decide to serve the same data into a
different format, such as Wireless Markup Language (WML) for mobile phones, then you
are faced with the problem of rewriting the application to provide for this new format.

 20

When the customer who was running our first Internet banking application decided to
support mobile phones, they had a completely new application developed. This
application was written with the specific goal of serving data, scraped out of the
generated HTML pages into the WML format required by phones. Indeed, many content
providers did exactly this when using mobile phones to surf the Net started becoming
popular, especially in Europe and Japan. Because of the way applications were being
developed—and, for the most part, still are today—each different format is thought of as
requiring a separate application.

Another drawback—and perhaps even worse—is the fact that the scripting approach does
not help you truly separate the layout design from the data you want to display. The same
people responsible for laying out the graphical design of the HTML page are forced to
know about the data and how to access it. Also, because of the way script pages are
integrated into the software that hosts them, the same person has to worry about the
architecture of the complete application.

As we saw from the way we were building applications based on ASP, the same person
who authored the code to access the data from inside those pages was designing the pages.
Apart from how the pages were filling up with the specific commands we mentioned
earlier, it became increasingly difficult to maintain a common look and feel for the whole
application, because the different authors were changing the look of the pages they
worked on.

Some scripting languages support the use of libraries of reusable code—and this does
help when large applications are built. However, when we looked at some of these
libraries being used by ourselves and also by our customers, we found that not only was
code being put into them, but the look and feel was contained in the code libraries as well.
So, what in fact was happening was that portions of the complete page were being stored,
making it just as hard to adapt the code for new formats.

Another problem is maintaining sites written in scripting languages. Imagine a
mission-critical application that contains perhaps 200 separate script pages. As soon as it
is in production, the application doesn’t suddenly stop existing. It is constantly extended
and bug-fixed. New versions are released as new functions in the application become
available. How do you manage to rescript the application for a new format such as WML
without affecting the stability you might have already achieved?

This is exactly the situation in which we found ourselves in 1999.

During that summer, our customer told us that they wanted to be the first bank in
Germany to support mobile phones and Personal Digital Assistants (PDAs) using WML.
Even though WML was written for mobile phones, the PDAs adopted this format as well
because it was easier for the software to display than HTML. This made us take a step
back from the way we had designed Internet solutions up to that point. At that time,
supporting the various browsers in the different types of mobile phones was far harder
than supporting the leading PC browsers.

 21

We took a close look at this upcoming “standard” of WML and the “standard” devices
that were slowly emerging. After we tested against a couple of the available phones and
PDAs, it quickly became clear that the situation was far worse than we had imagined.

At that time, very few phones supported WML and the underlying Wireless Access
Protocol (WAP) technology, but many mobile-phone vendors had announced their
support in upcoming versions. In addition to those on the market, we obtained a couple of
preproduction devices and tested those against the WML standard.

Because WAP was a hyped technology and everybody was rushing to jump on the
bandwagon, there were large differences in how the WML format was displayed. Some
phones displayed input fields on the same line as their label; other phones broke up the
flow of a form by putting the label and input field on two separate lines.

The hype went so far that one mobile-phone vendor released its new model with a
version of WAP that actually was never supported by the phone companies. Add to all
this the difference in screen layout and size between mobile phones and PDAs such as the
Palm, and we quickly decided that in no way did we want to fit all the WML code to
handle all this into the completed, tested, and running ASP pages.

At roughly the same time (having had our interest ignited after visiting XML talks at the
1999 JavaOne conference in San Francisco), we started checking out the possibilities of
XML and XSL technologies. The interesting thing about XML and XSL was the fact that
they were being adopted by nearly everyone who was anyone. Microsoft had initial
versions of these components available, and IBM and other Java vendors were hard at
work on their own versions.

Although we had yet to get our hands dirty by actually implementing an application using
XML and XSL, we could see that this might be a way to solve our problems.

So we decided to implement the WML solution using XML and XSL components from
Microsoft. We started out by defining exactly which data we wanted to present. This was
not too difficult because the WML part was to be integrated into the running online
banking solution. The application already consisted of the components that provided the
data. We then developed a single ASP page that accessed the data and built an XML
format using the available parser. When the XML data was available, it was transformed
into WML using the correct XSL style sheet.

(If you are not familiar with all these components, don’t worry; we will explain the
details in Chapter 2.)

And it worked. In fact, it worked so well that we were able to hand over the
time-consuming part of supporting the various mobile devices to our customer (one of the
great secrets of the software business).

 22

For the first time, we had built an application that separated the different areas of an
Internet application—layout, data, and site management. Each area could be worked on
by a separate person or instance, allowing development to happen in parallel and
minimizing side effects due to changes.

Taking our specific example, the style sheets that formatted the data could be developed
by someone who had no idea how the data (such as account balances) was accessed by
the underlying components. For example, a stylesheet for a Nokia phone could be
developed by one person, while someone else could work on the style sheet for a Siemens
phone. Each style sheet could then take the devices’ differences into account. Any device
that came out in the future could be integrated easily by developing and deploying a new
style sheet.

In the Cocoon project, these areas of development are called concerns, and Cocoon aims
to separate these concerns (often called SoC, for Separation of Concerns) so that they can
be worked on in parallel and without affecting each other. Going further than our first
solution, Cocoon also allows the application’s architecture (or design) to be separated
from both data and design.

After the success of our first XML and XSL application, we decided that it would be a
good idea to write a generic platform solution that would offer a more flexible way of
writing Internet applications than we had been doing up to then. We also thought that
there might already be something available that would help us do this. In order to
determine what functionality the end result needed to provide, we had to take another
step back from our everyday problems and evaluate how Internet applications were being
built from an architectural point of view.

Application Architectures

When we started writing software for large financial corporations in the early 1990s, we
wrote programs in C++ that ran on PCs (the clients). These programs connected to server
systems that supplied the PCs with data they had obtained from a mainframe. This was
the next step from when workstations connected to the mainframe and host emulations
were used to access host applications directly.

The PC programs were what would today be called thick clients, providing both a rich
user interface and decentralized business logic. The servers were mainly used to route the
data from the mainframe to the client. They contained little or no logic themselves.

During the 1990s, more and more logic was transferred from the mainframe and client to
the server. The clients became thinner, and the mainframes became dedicated data
suppliers. This client/server architecture was in place when the Internet and its
technologies started taking over the corporate IT world. This architecture was well-suited
for the typical tandem of browser and web server we see today.

 23

Today’s Internet application architectures are typically organized into three layers or tiers.
This is what you most commonly find in corporations that have migrated their
client/server architectures to Internet technologies. The tiers consist of a client; a server,
which provides some form of middleware application; and the mainframe or other legacy
system, which provides the data.

So when you perform a function such as retrieving your account balance, that data flows
from the legacy system through the middleware and is then displayed in a program
running on the client you are using, such as a PC, a mobile phone, or a TV.

Clients

In many areas, the thick clients of the 1990s have been replaced by the browser. Because
it is widely available on all platforms, the browser is an ideal publication front end for
applications that run on the server. The server application sends pages formatted in
HTML to the client, where they are then displayed. The first platform to support the
browser was the PC or workstation. As the PC took over as the operating platform for
other devices, such as the bank ATM, the browser moved with it. Even though you might
not know it when withdrawing cash, the ATM might well be running Internet Explorer or
Netscape.

The first way of accessing the Internet was through stationary devices such as the PC. A
big drawback of these devices is the simple fact that it is not easy to take them with you.
As the Internet became more of a way of life, often used to access up-to-the-minute
information such as stock prices and news, ways of accessing that information on the go
were needed. Portable devices such as the mobile phone and the PDA were already
available, so it was natural that the Internet should become available on these devices as
well. The mobile professional, out in the field, can use these devices to request
information and send details of the customer he is currently visiting back to his office.

The formats these devices understand are more diverse, ranging from WML to cHTML.
The standardization in this area is not yet as far advanced as HTML and the Internet
browser. However, the formats used in mobile devices, because the development is more
recent, tend to be based on XML. This makes these formats a lot easier to support in the
XML-based architecture we will discuss in Chapter 2.

PCs/workstations and mobile phones are the two classes of Internet clients you are most
likely to find at the moment, but there are many others. Some consumer devices offer
Internet access from the comfort of your own couch. Televisions are available that allow
you to surf the Net using specialized browsers while a TV program is playing in the
background. This allows you to call up additional information on the program you are
watching or take part in interactive games.

Even the car radio has become an Internet device. In tandem with a mobile phone, a car
radio can call up on its display web pages that help you navigate around traffic jams or
find the nearest restaurant. Obviously, a radio has display properties very different from a

 24

PC, so the data the radio receives needs to be in a format it can display properly. Because
visual information is distracting when you’re driving, the information might also need to
be provided in an audible format.

The Internet is available not only on devices you would associate with the web, but also
on devices you would normally not expect. We have already talked about the fact that an
ATM can run a browser just as well as a PC, but it can also use the Internet to
communicate and retrieve data. ATMs used to be banking devices that had only one
function—dispensing cash. Then other capabilities were added, such as accessing your
account balance or making a transfer. In addition, the communication networks were
standardized, and the protocols became Internet-based. Because banks are always looking
for ways to attract customers, they quickly found out that the Internet could be utilized to
display real-time information, such as stock quotes, while the money was being
dispensed.

When we enabled the Internet for devices such as ATMs, we used available formats such
as HTML and client programs such as browsers to display that information. This works
as long as the device resembles a PC. The less the device looks and acts like a PC, the
more difficult it becomes. This is the reason new formats have appeared and are evolving
for the different Internet clients that are available.

As the number of different devices and formats grows, it is becoming increasingly
important that an application present the same information to the user in a format the
device can understand. If you access your online banking account from your home PC,
from your mobile phone, and from the ATM, you expect to receive exactly the same
information in all cases, but presented in a device-specific manner. If a salesman accesses
customer data from his workstation and then from his PDA while on a train, he expects to
see exactly the same data.

That salesman also wants to be able to print documents containing the same data but in a
format such as Adobe’s PDF. This is one area that web applications have always been
reluctant to tackle, because the formats they can generate, such as HTML, are unsuitable
for printing contracts and binding documents. PDF is a format that maintains a page’s
“print integrity.” Banks consider it very important that any solution that can print
information for the user must be able to print it in a format such as PDF.

One of the first Internet applications we installed was a solution that allowed sales-people
to enter all the information they needed to provide a customer with financing for goods
such as cranes, boats, and cars. After the data was entered, by way of a Java applet, the
salesperson could send the contract to the browser as a PDF document so he could print it
for the customer to sign. As soon as the application on the server received the data from
the applet, it generated that data into a PostScript template. Then another program
converted the PostScript file into PDF, and that file’s link was returned to the browser.
Not exactly cutting-edge. We were basically using one application to present the data
inside the Java applet and another, separate application to convert and present that data as
PDF.

 25

Imagine the number of separate applications you would need if each could publish that
data in only one specific format. You would have an application that accessed a database
and formatted the data into HTML. Another application would access the same data and
publish to WML for mobile phones. A third application would be needed to format the
account balance for a speech format such as VoiceXML. As each new format and device
were released, developers would be rushing to develop a new application to support it.
Imagine the maintenance costs of all that software if someone decided to change the
underlying data format.

This might seem to be a problem that has developed because of the influx of various
Internet formats, but that is not the case. Looking closely at traditional applications we
wrote for banks before the Internet came about, we discovered that many of these showed
the same problems.

Imagine a corporation that stores its customer data in a large database. That database
contains all the transactions for a particular customer over time. One department wants a
reporting tool that publishes the data in a statistical format. A second department wants to
receive the customer data in a printable format, such as PDF. A third department wants to
write each customer a letter and therefore requires an address format. Normally, separate
applications would be written for each particular function.

Often, when these applications were then migrated to Internet technologies, the same
thing happened. Each traditional application made way for an individual web application,
when in fact the better way would have been to implement just one application between
the data systems and the clients. That application would be able to publish the data from
the database into each format needed.

A middleware application like this is a typical use case for Cocoon. Indeed, flexible
publishing to various output formats is one of its great strengths. Because Cocoon uses
XSL style sheets to format the output, it can publish data to a variety of presentation
standards, such as HTML, WML, PDF, and VoiceXML. It also allows you to add your
own components so that you can publish to a specific format you might require.

Middleware

The middle tier of an Internet application architecture is often called middleware because
it lies between the client and the data storage or legacy systems. Apart from publishing
data to a particular format, middleware applications are also responsible for accessing
data and integrating functionality that may be implemented on other systems.

One of the most common functions of a middleware solution is data aggregation. For
example, imagine a “get my account data” function, typically found in an online banking
solution. Although the end result of this function is your current account balance, a lot
can go on in the background. When you click the “get account data” button in the web
application, several things can happen. First, your customer data (who you are) is fetched
from the first database. Next, a function is called on the legacy system. (This system,

 26

typically a mainframe, stores your account balance.) Then, depending on your account
balance, a system responsible for customer relationship management (CRM) might be
called to indicate that a bank representative should call you with an offer of investing in
some company. So a single function to you as a user might actually be a combination of
several functions that go on in the background. The middleware hides this fact from you.
An ideal solution also allows these steps to be reconfigured or changed without you
noticing.

Another common example of this type of functionality is a middleware application that
provides content syndication, which is commonly found on news sites. A news site
accesses various sources of information and combines the data into a single layout, such
as an HTML page. The different news sources can be databases, other Internet servers
that offer their news for syndication, or a content management system in which
journalists type in local news as it comes in. A good site will allow you to configure the
news you are interested in and then will access only that data for you.

As you can see from these examples, a middleware solution provides the integration
platform for diverse systems such as a database, a messaging system, a mainframe, or
another web server, perhaps running another application. The interfaces and necessary
formats for these systems can be either standardized, such as using SQL for database
access, or proprietary, such as a corporation-specific protocol that allows access to an
application running on a mainframe.

Cocoon is a solution that enables you to build such a middleware application. Apart from
allowing the publication of data to various formats, it also consists of components that
allow the integration of various systems, such as the ones just mentioned. For example,
Cocoon has a component that enables you to integrate a database into a Cocoon-based
solution. You will learn more about the specific components in Chapter 4, “Putting
Cocoon to Work.” The Cocoon architecture also allows you to combine these
components to build an application containing functions such as the “get my account
data” function mentioned earlier. Because the architecture is extensible, it allows you to
add your own components. This might be necessary if you want to integrate a back-end
system that is not supported by Cocoon out of the box. We will show you how to write
your own components in Chapter 9, “Developing Components for Cocoon.”

Back-End Systems

One of the major functions of a middleware solution is to hide the back-end systems from
the clients. By this we mean that the client accesses the middleware to obtain the data and
does not need to access the mainframe directly.

Back-end system is a term most often used in connection with mainframes or host
systems. The term legacy system is also often used to describe mainframe applications
that are specific to a particular corporation. When we are on-site at a company, such as a
large bank, we seldom get to see or access these systems directly. It is our experience that
the people who work on these systems are treated with a lot of respect, and their opinions

 27

are valued. There is a simple reason for this. Often the applications running on these
systems have been in place for many years. Many times, the original programmers no
longer work for the company, so anyone who knows how to change the code is an
important asset to the company.

A large middleware vendor once told the following story at a training course we attended:
When a large German airline decided to migrate its mainframe applications over to a
more modern software architecture, they discovered that only a couple of the original
people who had written the application were still alive. In order to make sure no mistakes
were made during the transition period, the airline flew one of the programmers in from
the U.S. to watch over the process.

It is our experience that when a decision needs to be made as to whether the mainframe
application needs to be changed—or whether the middleware can be adapted as a
workaround—the middleware always wins. We have even had to adapt our middleware
to compensate for errors in host applications. It just takes too long to change the
mainframe solution, and the programmers are just too expensive.

During the transition period into the year 2000, banks and other large companies paid top
money for programmers who knew how to program in, for example, COBOL. All the
mainframe applications had to be checked and many rewritten because of the two-digit
year problem. When the original programs were written, in some cases decades before,
nobody thought the year 2000 would be a problem, because the software would be long
gone by then.

Because these systems have been around for such a long time, they often are
incompatible with one another or with modern application architectures that might use a
standardized format to exchange data. Therefore, it is the job of the middleware to form a
bridge between these systems so that the end result does not look as though it comes from
completely different sources and in different formats.

Without using a solution such as Cocoon to build this bridge, an application written to
access account information from a legacy system would not be able to integrate an XML
feed of stock quotes.

Cocoon in the Middle

As explained in the previous sections, Cocoon is well-suited to building middleware
solutions that shield clients from the back-end systems. Because corporations are
unwilling to alter their applications and because of the existing protocols, a middleware
solution must be able to integrate these proprietary systems as well as standard ones.

Cocoon allows new components, written for exactly this purpose, to be integrated into the
given architecture to form a complete solution. These components can then access the
mainframes, databases, and any other system using whatever protocol and format is
necessary. The data they obtain can then be formatted into a common XML-based format

 28

and merged to allow the presentation inside an application such as a browser. Figure 1.4
shows what a complete solution using Cocoon might look like.

Figure 1.4. A Cocoon-based, three-tier architecture.

Figure 1.4 shows how Cocoon can access data from a variety of systems and then format
it for presentation in the required output format. The Cocoon architecture enables you to
merge the different data to give the client a single presentation format that hides the
source of the data and its original format from the viewer.

Up to now we have looked at Internet application architectures from a more technical
viewpoint, showing how different systems need to be integrated into a common
middleware solution and how the data must be presented in a device-specific manner.
However, there are also other challenges that a modern software solution needs to solve
for it to be a success.

The Challenges of Building Internet Applications

We have already seen that publishing data to various formats and integrating diverse data
systems are two of the major challenges facing a modern Internet application architecture.
However, there are also other challenges that must be met. Apart from being able to
integrate data, any new solution installed in a large corporation must also be able to
support applications that might already be installed there. Because the Internet has
speeded up the half-life of technologies, a solution must also be as platform-independent

 29

as possible so that it can survive major changes to such things as the operating system
and can run in as many environments as possible.

Being able to personalize the data the application sends to the client is perhaps one of the
requirements we hear most often when talking to customers about new middleware
solutions based on Internet technologies.

Personalizing Content

Anyone who surfs the Net, trying to find a certain piece of information, can quickly
suffer from information overload and have difficulty finding exactly what he is interested
in. This is also the case, although on a smaller scale, inside corporations on their intranets.
The popular term for an application that allows you to control what the client receives,
instead of sending everything, is portal.

A portal presents the available information in a way that allows the “user” to configure
the presentation so that he receives only the content he really needs. The reason we put
the word “user” in quotation marks is because the user might not be a person. It could
also be a device. A portal that serves information to devices needs to select that
information based on information about the requesting device—just as a person interested
in the weather in San Francisco wants to receive only that information. He doesn’t care
whether it is raining in Paderborn, Germany (which often it is).

A portal is often a major part of a middleware application because it provides a
personalized view of the data to the user. Portals can be built either as single pages of
information or as pages that contain several blocks of information obtained from different
sources—just as the personalized news site we mentioned earlier is considered a news
portal.

So, apart from being able to integrate data from various sources, the middleware solution
also needs to allow the user to tailor the information in different ways, such as moving
information around, adding or removing information, and changing the colors or fonts. A
portal also needs to be able to integrate complete applications as part of its content.

Integrating Applications

When we approach a customer about installing a new Cocoon-based middleware solution,
we are often told that he already has several different web applications he wrote when he
migrated his traditional client/server architecture to a web-based architecture. Any portal
that is to be implemented must therefore be able to integrate not only data, but also these
existing applications.

When Internet technologies began to take over the corporate IT world, large corporations
rushed to develop new Internet applications to replace their traditional ones. However,
this often resulted in different departments producing applications that did not have a

 30

common HTML look and feel, and sometimes they also contained duplicate code needed
to access the legacy systems.

For example, imagine a portal that is built to serve internal corporate data to employees.
Each employee logs on to the portal using an ID and password. After logging on to the
portal, the employee sees current data and can start an application that provides access to
his retirement fund plan. This application was written before the portal was established
and ran as a stand-alone web application. Now that the employee is logged on to the
portal, he should be able to start the application without having to log on again. This
capability is often called single sign on, and it must be provided by the portal.

Also, if the application already publishes its data to an Internet format such as HTML, a
portal should be able to integrate that format as part of its content. If this is possible, the
portal can provide a common look and feel across all applications, whether old or new.

Because corporations often already have an Internet infrastructure in place, on which they
perhaps also run web-based applications, it is important that any middleware solution can
run on that given platform.

Platform-Independent Solution

The IT world changes quickly—sometimes overnight. Although large corporations are
not able to change their infrastructure as quickly as an individual, they are also known to
throw out one operating system and change to another at the drop of a hat. For example,
in the 1990s, corporations were willing to pay large sums of money to have their software
ported from OS/2 to Windows NT. Because of the number of applications and the
increasing speed at which new operating systems are sometimes released, by the time the
applications were all ported to NT, all the clients were running Windows 2000.

Today, things are different, because firms have reduced the amount of money they are
willing to invest in IT infrastructures. The lack of corporate investment presents an
additional challenge to the software supplier: being able to supply software that will still
run if the underlying platform changes. This is one of the reasons Java has been so
successful on the server. This is also the reason applications such as application servers
have become popular for hosting middleware solutions. Application servers built on top
of Sun’s J2EE architecture allow the integration and combination of modules such as
servlets and Enterprise Java Beans (EJBs). These components are then interconnected to
build the application that is needed.

So, instead of monolithic server applications being built, the current trend is toward a
component-based architecture on the server. Because of this, a middleware solution must
itself be built from components, must run in a variety of infrastructures, and must allow
additional components to be easily integrated.

A common requirement in today’s web-based architectures is for offline page
genera-tion.Very often, corporations want to be able to generate a current view of their

 31

web pages—as if they were taking a snapshot of their site at a given time. These
snapshots are often deployed to other web servers to be served statically, perhaps for
performance reasons. Another goal is to be able to put all the generated pages on a CD
that can be handed out to customers or at training courses. So, apart from perhaps
integrating the solution into an online scenario such as an application server, the
application needs to provide alternative methods of being called (for example, via the
command line).

As you can see, all these requirements result in the demand that the Internet application
provide a very flexible architecture.

Flexible Architecture

Today’s middleware applications are built using a combination of various components
that can be reused repeatedly. Although Cocoon is written in Java and this book therefore
focuses on Java components, the same is also true of Microsoft-based architectures.

Gone are the days when software companies received contracts to build complete and
singular solutions. Now the goal is to build applications from standardized components
and add a little specialized “glue” here and there. The glue can be a configuration file that
is adapted to integrate the new component. It could also be something like a script that
defines in which order the components are to be called to process an incoming request.

You can compare this method of building applications to cooking a Mexican meal. The
“components” are things such as meat and vegetables. You can make a variety of things
from these components. The “glue” we mentioned would be the spices and the habanero
chiles you use to make it a Mexican dish and not something else.

Any customer who is interested in installing an Internet application architecture will want
to be able to drop in available components as easily as possible. In order for this to be
possible, the architecture must define clear interfaces that these components can then
adhere to. Using the documentation of these interfaces, the component builder can build a
new module to, say, integrate a proprietary system and then add it to the middleware
solution by perhaps just adapting a configuration file.

Apart from defining the interfaces to the components, the solution must also make clear
how these components are called, when they are called, and what is expected of them.
This is often dealt with in the solution’s documentation and—in the case of Cocoon—is
enhanced by secondary literature such as this book. A book on Cocoon must also help the
reader decide whether the solution as a whole is suitable for his specific needs and
challenges.

Using Cocoon to Meet the Challenges

This chapter dealt with the various challenges a modern Internet application architecture
must address in order to be a success:

 32

• Flexible publication of data to various formats
• Integration of diverse data sources
• Personalization of content
• Integration of applications
• Platform-independent solution
• Flexible architecture

There are probably also other challenges that arise from specific situations, such as what
type of application to build or the exact type of data sources to be integrated, but these
challenges are the ones we hear most often from our customers when confronted with a
new middleware solution.

Another challenge that you have perhaps missed up to now is that of the solution’s cost.
Some solutions, such as commercial application servers, meet several or all of the
challenges just listed. However, they come at a cost.

Cocoon is a Java solution that is freely available today in source or binary form. It runs in
a wide variety of given Internet infrastructures, such as on web servers, and it offers a
highly extensible architecture. In addition, it offers the possibility of being called from
the command line via an alternative interface.

After you’ve installed it, Cocoon offers components for integrating data sources and for
flexible publication to various formats. It also allows you to personalize what the client
receives and to integrate other web applications you might already have.

All this is important, but the fact that Cocoon is completely XML- and XSL-based is
perhaps what makes it stand out the most from the commercial offerings you might be
familiar with. Why you should worry about deploying a system that uses these
technologies is something we will discuss in the next chapter.

 33

Chapter 2. Building the Machine Web with XML

In the fast-paced world of Internet software architectures, where technology changes
quickly and new de facto standards are sometimes born overnight, any new application
architecture must be able to meet the challenges laid out in the Chapter 1, “An
Introduction to Internet Applications.” Before any corporation invests in a new
application architecture, it first compares it to whatever it is currently using and sees how
the new offering can solve its problems.

Most of the available Internet applications were originally designed to publish data in a
specific format—HTML. However, an HTML-based architecture is not suited to
providing for the variety of devices and necessary formats required by today’s growing
number of Internet devices and applications.

The XML family of standards was defined to alleviate the deficiencies of HTML. It is
now the language of choice for computer systems that want to exchange data with each
other over a network. The Apache Software Foundation hosts a number of projects in
which industry-strength, open-source XML components are being built. Apart from
projects that are developing single components, the Cocoon project provides a complete
XML architecture for building XML solutions. In many cases, you can do this without
writing a single line of code.

To see why XML offers so many advantages for building Internet applications, we must
first take a look at HTML and see why it is not well-suited for a web in which machines
communicate with each other.

HTML Applications

Most Internet applications you use every day—such as your favorite news page, the
search engine that helps you find what you’re looking for, or the online banking
application that tells you how much money is in your account—were built to present
information in a format that was invented in the early 1990s.

Tim Berners Lee invented HTML in 1991. He originally designed HTML to present
linked information on a computer network in a form suitable for human viewing. When

 34

the first web was established at the European Particle Physics Laboratory, the server ran
on a NeXT machine, and a simple browser program allowed the web pages to be
accessed from a variety of platforms.

HTML has since become the language for presenting information on the web for humans
to read. When you look at a page of HTML, you can determine what the information
means from the way it is formatted and what other information is presented with it. But
when you need to send the same information over a network so that it can be processed
by a software component, you need to take a closer look at whether HTML is the right
format to use.

The Meaning of Data

Because HTML was designed to present information to humans, it has many drawbacks
when that data needs to be interpreted by machines. One of the major deficits is that as
soon as the data is formatted into HTML, the original meaning of the data is lost.

When you look at HTML pages, you can determine the meaning of what you see by how
the data is formatted or by other information that is presented with it. You use the visual
context of the HTML page to understand the data’s meaning.

For example, consider an HTML table. The data in that table might have originally come
from a variety of sources, in which each column of data had a specific meaning or type.
Listing 2.1 shows a simple HTML table.

Listing 2.1 A Simple HTML Table

<table>
 <tr>
 <td>Matthew</td>
 <td>1964</td>
 <td>36</td>
 <td>43</td>
 <td>183</td>
 </tr>
</table>

A proper HTML table would probably have an additional row with the headings for each
column. As you can see from this example, leaving off the headings makes it difficult to
determine what the information means (even if you understand what 1964 means, what
does 183 refer to?) and what relationship each column might have originally had to a
previous one. Each piece of information is formatted with the same <td> tag. This is fine
when you view the table, complete with titles and so on. But how would a machine be
able to interpret the table and decide what each column meant?

If you took HTML as the “base” format and sent your sample table to a component for
processing, how would that component know what each piece of data meant? The
difficulty lies in the fact that HTML mixes content with the layout.

 35

How HTML is formatted takes into account how the visual representation of the data
should look to a human viewing it. In the preceding table, notice how the name is
formatted with the tag, for bold. Every browser that presents that data knows how to
interpret each HTML tag. A machine or application can interpret data formatted in
HTML, as long as the goal is to present the information in a visual and predefined way
(in this case, as HTML defines the presentation). If a browser encounters the tag in
an HTML page, it will always emphasize the enclosed text by making it bold.

By using HTML as the base format, and because of the way a table holds no information
on what the data actually means (apart from any textual information you care to add as a
heading), you lose the semantics of the underlying data. If a software component received
the preceding HTML table with the goal of sending it on to a remote machine for
processing shoe sizes, how would that machine be able to determine which of the
columns contains a (European) shoe size and which column contains an age?

This is the basic problem with formats that are designed to combine data and layout
information in one presentable screen format. Although this might seem to be a problem
specific to HTML, this is not the case, as you will see in the next section.

Extracting Data from Screens

There are ways for machines to interpret visual data and extract the information from
them. In fact, the technique for doing this goes back to the time before HTML had even
been thought of.

In Germany, one of the earliest online banking networks was set up by the German post
office monopoly in June 1980. It was called BTX for Bildschirmtext (screen text). BTX
ran on a mainframe and offered various services via dial-up phone lines. The killer
applications of BTX were the online banking applications provided by the different banks
and hosted on the BTX system. It was a great success, because you could use a computer
for banking transactions from the comfort of your own home. This was long before
Internet banking, or even the popular Internet.

In 1997, when we wrote the first Internet banking solution (discussed in depth in Chapter
1), we had to provide a system that could interface with the banks’ running BTX system.
The screens of the BTX banking application were based on the Conference Europeenne
des Administrations des Postes et des Telecommunication (CEPT) standard, a way of
defining screen data in which the layout is standardized in 24 rows and 40 columns. Each
screen the BTX system sent to the client was filled with the appropriate data (such as
your account number) and also contained attributes to determine how the information
should be presented. The screens also included fields where data had to be entered in
order to send that information back to the mainframe.

The way to access the screens was for a software component to read a complete page into
a buffer and then to navigate to, say, line 1, column 6, and read exactly seven characters
(the customer’s account number). Then the component would access the data at some

 36

other fixed position in the screen buffer and extract the account balance, and so on. This
technique is called screen scraping.

Our solution included a component that could scrape the screens and access the needed
information. About three months after we installed the solution, things started going
wrong. The bank changed the screens’ layout (remember, the BTX application was still
running and being used in the old fashion), and our screen scraping failed abruptly. We
got around that by making the scraping scriptable in the application—and by telling the
customer, “If you change the screens, you’ll need to change the script.”

There was just no other way to do it, because what each piece of information actually
meant was lost in the screen representation. You couldn’t just scan through the page until
you came to the information labeled “account number” and extract it, regardless of the
position. There was no label.

It is the same situation with HTML. You can scrape each HTML page and extract the
information if you know exactly where in the page the information you are interested in
is. Of course, you then hope that no one changes the HTML page in the future.

We used this example from an older, non-Internet-oriented technology to show that the
problem of mixing layout and content is not new—and it has nothing to do with
technology. In order to avoid these problems, you need a completely different
approach—both in technology and in how you plan your application—as to how you will
separate the content from the layout information. Just as the CEPT standard made it hard
for software components to easily access the data contained in the screen, HTML
formatted pages make it difficult to access the data contained in them.

As HTML and the web became popular, browser vendors added ways of allowing more
information about the page to be authored into the HTML information, using such things
as metatags. In the end, however, HTML still remained a format for displaying data to
humans.

XML Arrives on the Scene

By 1996, it was obvious that HTML had too many limitations to make it the language of
the machine web, a web where computers could communicate with each other in an open
and cross-platform fashion. The companies that wrote browsers also began to extend
HTML so that they could exploit the advantages of their own offerings without having to
rely on a committee to standardize the rapidly changing format. Therefore, in 1996, the
World Wide Web Consortium (W3C) started a project to define a new technology that
would move the web into the machine web age. (The W3C is a neutral forum formed by
Tim Berners Lee, where companies meet to discuss how the web should progress and
define new protocols or technologies that enable this.)

This project was the beginning of what we now call XML. XML has grown from being
just a way of defining data to allowing the definition of that data to be published in a

 37

standardized way. It also allows flexible transformations from one format to another and
forms the basis of the various XML components that allow applications to be built.

Extensible Markup Language (XML)

In 1998, the W3C released version 1.0 of the Extensible Markup Language (XML)
recommendation. XML was created by a group of companies, including Microsoft,
Adobe, Sun Microsystems, and many others. These companies made up the W3C XML
Working Group. XML was defined as an “open, human-readable format that does for
data what Java does for programs” (refer to
http://www.w3.org/Press/1998/XML10-REC).

One of the most noticeable things about this new format was the fact that competing
companies designed it jointly. This was perhaps the key factor that made the technology
become so successful so quickly.

Although XML 1.0 defined what tags and attributes are, there is now a whole family of
standards that make up XML. Technologies such as XLINK, XSL, XPointer,
XFragments, and XML Schemas exist today to allow applications to be built on top of
these standards.

There are already a number of books on these subjects, so we refer you to those for a
deeper look at these technologies. However, because many of the XML family members
have made their way into Cocoon, we will introduce you to the most important ones as
we progress. We will also provide you with the background information needed to
understand key Cocoon concepts and the examples provided in this book.

So, what is XML, anyway?

XML is one of those buzzwords that vendors and company managers tend to use in a
fashion that shows they don’t really grasp what XML actually is. Here are some
statements we have heard when talking to customers about XML solutions:

• “Our data format is XML. Can your system interpret that?”
• “We don’t want a system that uses XML. It’s too slow.”
• “If we send our data in XML, everyone can read it.”
• “XML was invented by Microsoft. We don’t use Microsoft software.”

Obviously, Microsoft was only one of the companies involved in defining XML, and of
course XML has nothing to do with the software you use, but what about the other
statements? Apart from the fact that many companies took part in the definition of XML,
its success is also due to its being an open and extensible way of defining a data format.
After it is defined, a strict rule set about the data can be published so that other interested
parties can design software to understand the format. You can also define your format to
be globally unique so that it doesn’t get mixed up with someone else’s definition.

http://www.w3.org/Press/1998/XML10-REC

 38

As you can see from the preceding statements, XML’s openness is something that many
people find hard to understand at first.

Building an Open Format

XML was defined as a way of describing data in an open, readable, and structured
fashion. XML itself is not a format you can actually use in your own application. XML is
a rule set that tells you how you can define an XML-based format for your own use.

If you want to send your customer data in an XML format, you have to define that format
yourself, or use a standardized format if one is available. One of XML’s key advantages
is the fact that many formats have already been defined and their specifications published.
We will discuss this in more detail later in this chapter.

XML data is open. By this, we mean that you can send your XML data from an
application written in C++ on a UNIX machine to an application written in Java on a
Windows system and, if the systems have the necessary components, they will be able to
read and process the data. Although designed as a way for machines or applications to
communicate with each other, XML is also a format that you can read without the aid of
software.

By supplying a set of rules with your data, the remote machine or application will even
be able to “understand” and check what you are sending. After you have defined the rules
of your format, you can exchange them with other systems you want to communicate
with. You can also publish these rules so that applications that don’t even exist yet can
understand your data at a later date.

However, XML does not force you to be open. In fact, you can define a format based on
XML and make it just as proprietary as the binary format you were using before. The
XML family provides the “tools” to make that format open and cross-platform or
cross-company. Whether you actually use them is still up to you. This is one point that is
often missed when companies build their first XML applications.

What’s Your Format?

The following example shows the problems that can occur when XML is used only as a
way to define a data format. It also shows why you need to take into account other
members of the XML family of standards when designing an XML application. The
example shows that as soon as you’ve decided on an XML format and written the
software, there are further steps you should follow to make full use of all the advantages
of XML.

At the headquarters of a large bank, the department responsible for customer
relationships wants to build a new XML-based application. They first define the format to
represent a customer, as shown in Listing 2.2.

Listing 2.2 Customer XML Format

 39

<customer id="">
 <name/>
 <address/>
 <account>
 <id/>
 <since/>
 <balance/>
 </account>
 <importantcustomer/>
</customer>

As you can see from this example, an XML format is always readable. This does not
mean that the data contains information on how it should be presented, but that it can be
read without relying on a machine to interpret it. This can be very important when
designing and testing XML applications.

The format is made up of tags. Using logical names makes the information easier to
understand for humans reading the data. Each tag can have attributes (such as id being
an attribute of <customer>) and children (other tags that are logically “inside” or
enclosed by the parent tag). As opposed to HTML, the tags only delimit the data. They do
not tell the application that reads the data what it should do with that particular piece of
data. The tag in HTML is an example of the difference. A browser that receives this
tag will always format the enclosed text in a bold font. The tag acts as an explicit
command for the browser.

XML data is structured in a logical fashion. As you can see, the example has a logical
entity called “customer.” Customer has a name and address and contains information on
an account. The account is also structured in a logical fashion, containing the ID, when
the account was created, and the current account balance.

Note that XML does not force you to define your data in a logical fashion. You can still
make a mess of defining your data if you want to. Instead of using descriptive names for
the tags in this example, we could have chosen meaningless combinations of letters and
numbers if we wanted to. For example, the customer format shown in Listing 2.3
conforms to XML.

Listing 2.3 Bad Customer Example

<poiu xx="">
 <xxc/>
 <ysq1/>
 <dfr>
 <blag/>
 <ABC1234567/>
 <fgh/>
 </dfr>
 <ghjgj/>
</poiu>

It should be obvious from this example that using descriptive names is the better option.

 40

After you’ve defined the format, the next thing to do is to write the software to process
the data and to make sure the format is documented.

Publishing the Format

After deciding on the customer format, the bank’s customer relationships department
builds the server software that can understand and interpret exactly the defined format
(after all, they know exactly what each tag means). To reduce the amount of data sent,
they define that two things are optional in their format: <importantcustomer>, with the
default being “no,” and the <account> tag, in which all the children can be left out if the
customer has not yet purchased anything. They also define that the <address> tag is
mandatory because the old legacy system needs it—but the word “none” can be used to
define that no address has yet been entered.

When the server application is complete, the department builds a web front end that is
able to understand the defined format and can also handle the implicit options that were
chosen. Because the same people wrote both server and client, there is no need for the
optional tags to be documented. After the software has been tested, it is installed, and it
functions without problems for some time.

A few weeks later, a foreign branch of the same bank decides that it can integrate its
Java-based system into this new XML system. So the branch asks for samples of the data
to be sent. They receive the examples shown in Listing 2.4 from the implementing
department.

Listing 2.4 Sample Customers

<customer id="1234">
 <name>Carsten</name>
 <address>Delbrueck, Germany</address>
 <importantcustomer>no</importantcustomer>
</customer>

<customer id="1235">
 <name>Matthew</name>
 <address>Paderborn, Germany</address>
 <importantcustomer>yes</importantcustomer>
</customer>

The foreign branch looks at the data they receive and builds a system that can send and
receive this format. They build the system, test it against the test data they received, and
are happy.

They then go into production and wait for the first customer data to be sent from
headquarters. Imagine their surprise when the first customer data comes in (see Listing
2.5).

Listing 2.5 A Real Customer

 41

<customer id="AYX1234">
 <name>Christopher</name>
 <address>none</address>
 <account>
 <id>1234AD</id>
 <since>1997</since>
 <balance>-24,98</balance>
 </account>
</customer>

What’s this? The customer ID is not numerical, the address is “none,” there is an extra
<account> tag with lots of additional tags. And where is the <importantcustomer> tag?
The format that the server actually sent to the new Java client looks quite different from
the sample data that was first sent. If the new program was written to handle exactly the
type of data the examples had, it would not work when it receives a customer with all the
additional information. After all, nobody told the programmers of the client application
about the optional tags.

This is where an important factor of XML-based data comes into play—document
definitions. In the form of Document Type Definitions (DTDs), these definitions are a
logical description—or rule set—of the data. Listing 2.6 shows what the DTD of the
sample data looks like:

Listing 2.6 Customer Format as DTD

<!ELEMENT customer (name, address, account?, importantcustomer?)>
<!ATTLIST customer id CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT account (id, since, balance)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT since (#PCDATA)>
<!ELEMENT balance (#PCDATA)>
<!ELEMENT importantcustomer (#PCDATA)>

Using a standardized notation, it is possible to author a rule set that defines how the
customer data should look. For example, note how on the first line the tags account and
importantcustomer have a ? after them. This means that they are optional. Also notice
how account is defined to consist of id, since, and balance on the fifth line.

Why is a DTD needed? In this example, you can see that it was obviously not enough for
the foreign branch to receive a few examples of data, because they had no way of
knowing whether the information contained in that data was complete.

However, if they had received the DTD and then built their software to that specification,
rollout day would have been a success. Also, as you will see later, some software
components are available that can use this information to check whether the data they
receive is correct.

 42

Another way of thinking about these types of definitions is that you are writing a contract.
When you give the definition to someone else, you are basically saying, “I will send my
data in exactly this format. You can depend on it.” Sending your data in a different
format then means that you are in fact breaking the contract.

DTDs are now being replaced slowly by XML Schemas. One of the disadvantages of
DTDs is the fact that they are not defined in an XML language. Listing 2.7 shows what
Listing 2.6 looks like as an XML Schema.

Listing 2.7 The Customer Format as a Schema

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="customer" type="CustomerType"/>
 <xsd:complexType name="CustomerType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="address" type="xsd:string"/>
 <xsd:element name="account" type="AccountType"

minOccurs="0"/>
 <xsd:element name="importantcustomer" type="YesNoType"
 minOccurs="0" default="no"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="AccountType">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:string"/>
 <xsd:element name="since" type="xsd:gYear"/>
 <xsd:element name="balance" type="xsd:decimal"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="YesNoType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

As you can see from this example, XML Schemas allow you to be more exact when
defining your data. In this example, you can explicitly define the types of the various data
items.

So a key to XML’s interoperability is the publication (whether inside an organization or
globally) of the rule set that defines the data you will be sending. Imagine how important
this becomes if you want to send the same customer information to completely different
companies around the globe.

Global Definitions

 43

The Internet is a network that links companies around the world. How do you know that
no other company has also defined a <customer> model based on XML with a
completely different meaning and structure? What happens if you send your <customer>
to that company? Clearly, this is a problem. In order to allow the interoperability of
different definitions like this, the concept of namespaces was defined as part of the XML
standard.

In general, namespaces are used to uniquely define the meaning of the elements and
attributes in an XML document. They are used to make sure that your definition of, say, a
tag called <customer> does not get mixed up with someone else’s definition of a tag
called <customer>. So, to make sure this works, you mark your element with your
namespace. It is basically your way of saying, “This is my definition of a customer.”

In XML, a namespace is identified by a Unique Resource Identifier (URI). In most cases,
this is a web address, such as http://www.s-und-n.de/customer. Namespaces usually
are defined using the special xmlns attribute inside the XML document. This attribute is
often used in combination with a prefix, such as xmlns:customer, xmlns:xsl, or
xmlns:xsd. The name following the colon is a placeholder for the URI. Using this prefix
for the elements applies the namespace to that element. As you can see in Listing 2.8, the
customer tags now have our namespace, so there is no danger of this definition becoming
mixed up with someone else’s.

Listing 2.8 Customer Example with Namespace

<mycust:customer id="AYX1234" xmlns:mycust
="http://www.s-und-n.de/customer">

 <mycust:name>Christopher</mycust:name>
 <mycust:address>none</mycust:address>
 <mycust:account>
 <mycust:id>1234AD</mycust:id>
 <mycust:since>1997</mycust:since>
 <mycust:balance>-24,98</mycust:balance>
 </mycust:account>
</mycust:customer>

DTDs, XML Schemas, and namespaces are often treated the same way as software
documentation: In a software project, these are the last things to be completed. However,
it is our experience that this is the wrong approach. Because of the way XML can be
extended by adding new tags, any discrepancies between the way you thought you
defined the data and the way it is actually being used might not appear for some time.
After you have defined your data, the next step is to transform it into something
presentable. This is where XSL and XSLT play a role.

Extensible Stylesheet Language (XSL) and XSL Transformations
(XSLT)

 44

In the preceding section, we showed how data such as a customer can be defined using
XML, and we presented the rules that govern how XML is built. The next step is to
transform the XML data into a different format—either another XML data format or
something presentable such as XHTML by adding layout information.

When you send your customer data to a company that already uses an XML-based
application, wouldn’t it be great if it were possible to easily transform your <customer>
data into their <customer> format?

For this purpose, a set of standards was defined by the W3C accompanying XML. The
Extensible Stylesheet Language (XSL), which has been a W3C recommendation since
October 2001, consists of two big parts: XSL Transformations (XSLT), for transforming
XML documents, and XSL Formatting Objects, for specifying document formatting.

This is exactly where XSLT comes in. XSLT has been a W3C recommendation since
1999 (which is why it is often thought of as being XSL, when in fact it is only part of
XSL). It defines a language that allows the transformation of one XML format into
another (or any other text-based format). We will take a closer look at the document
formatting aspects of XSL later in this book. For now, we will take an introduc-tory look
at XSLT.

Although the following gives you a short introduction to and example of XSLT, this is
not an XSLT book. So we suggest you read up on XSLT using the available literature and
web sites. Cocoon makes extensive use of XSLT, so you will need some knowledge
before you start building your own Cocoon-based application. However, the following
gives you enough background to be able to understand our examples.

XSLT is a set of commands for transforming XML. You build up your stylesheet using
these commands and then save the complete stylesheet so that it can be used later. The
stylesheet is in itself an XML document, so the rules of XML authoring apply to
stylesheets as well. Listing 2.9 is a simple example of a stylesheet that transforms the
customer data used earlier into XHTML format.

Listing 2.9 Simple Stylesheet Example for the Customer Data

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/TR/xhtml1/strict">
<xsl:template match="customer">
<html>
 <head>
 <title>Our Customer</title>
 </head>
 <body>
 <center>
 <h1>Customer details</h1>
 <p>ID: <xsl:value-of select="@id"/></p>
 <p>Name: <xsl:value-of select="name"/></p>
 <p>Address: <xsl:value-of select="address"/></p>

 45

 <p>Account since: <xsl:value-of select="account/since"/></p>
 <p>Account balance: <xsl:value-of select="account/balance"/>

</p>
 </center>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>

As you can see, XSLT makes extensive use of namespaces. This example contains the
namespace that refers to the XSLT definition itself and also the namespace that refers to
the definition of XHTML.

Each style sheet starts and ends with <xsl:stylesheet>. Inside this tag can be one or
more <xsl:template> tags. The <xsl:template> tag encloses the rules that are to be
applied to a particular tag of the source XML document. So that you understand this, we
need to briefly explain how the processing of XML with a style sheet works.

Figure 2.1 shows that the XML data is processed by an XSLT processor. You do not need
to write this component yourself, because there are already XML components available
that you can use in your own applications. We will talk more about them in the next
section. The XSLT processor transforms the XML data into a “result” document using
the style sheet.

Figure 2.1. XSL processing flow.

To do the transformation, the processor goes through the XML data (starting at the root)
and searches for templates that match the tags in the XML data. Whether or not the
template matches the XML data is defined by an attribute, conveniently called match,

 46

that is attached to the xsl:template tag. The example has a match that is triggered when
the customer tag is found. If a corresponding template is found, the processor goes
through all the tags contained in the style sheet inside that particular template. For each
tag inside the template, the processor does one of the following:

• If the tag in the style sheet has the XSLT namespace, it is executed.
• If the tag does not have the XSLT namespace, it is output to the result document

as is.

The tags in the style sheet that have the XSLT namespace act as commands for the XSLT
processor. One command might be to take a specific tag from the original XML data, and
another command could make the processor jump to another place in the style sheet to
continue processing. In all, you can use many commands when authoring your style
sheets. In this way, XSLT does resemble a programming language.

Because our style sheet contains XHTML tags, these are output to the result document
unchanged. Inside these XHTML tags, an additional XSL command (xsl:value-of)
selects the value of a particular tag from the XML data and inserts it into the output. All
in all, this transformation results in a complete XHTML document that contains the data
from the original XML document.

This is how all style sheets are used to produce a particular output format. This can be a
format for presentation, such as XHTML or WML, but it can also be a format needed to
exchange information between firms. Therefore, it would be possible to use a style sheet
to transform a sample definition of a customer into someone else’s.

If every XML application had to build the XSLT processor itself, XML would never have
become the standard that it is today. One of the advantages of using XML to define your
data format or style sheets is the fact that these components already exist.

Using Standard Components

Up to this point, we have not yet talked about the software you need in order to build
XML applications. Because XML is a standard means of defining data formats, it makes
sense to use standard software components to access XML data or to process style sheets.
Before we take a look at the specific XML components that are integrated into Cocoon,
we will provide some background on the most important XML component—the parser.

The XML parser plays a major role in any XML application because it allows the other
software components to access the XML data and manipulate it if they need to. XML
parsers come in two different “flavors,” according to how they allow access to the XML
data—DOM and SAX.

The term Document Object Model (DOM) refers to the fact that the parser builds a
complete representation of the XML data (often called a document) and holds the
complete structure in memory.

 47

The DOM is a W3C recommendation that defines programming language-inde-pendent
interfaces to access the data in memory. Examples include getting the root node of an
XML document, moving through the document structure, and perhaps modifying the
content of a specific tag. The current version of this recommendation is called DOM
Level 2. In addition to the first draft (DOM Level 1), the second version is
namespace-aware. Namespaces allow the definition of an XML format to be unique. This
is important, as you saw earlier in this chapter when we discussed the potential problems
of someone else already having defined an XML format for a customer that would
conflict with yours.

Accessing the XML data via DOM functions is quite simple. Because the parser stores
the complete structure for you, there is no need to keep a copy of the data in your own
component. However, a major drawback of DOM is that the document representation
requires a lot of memory to be available, so DOM does not scale well for large XML
documents.

The event-based approach (referred to as the Simple API for XML [SAX]) is completely
different. The parser reads the XML data, and each time an element is encountered, an
event is fired that the application can respond to. The application component that receives
the event can then decide whether the tag and its content are important and processes the
data if this is the case. An important fact to remember is that the SAX parser does not
hold the XML data as a tree in memory, so any application component will need to do
this itself if it needs access to larger sections of the XML document at a later time.

The SAX model is a recommendation not hosted by the W3C, but it has reached the same
acceptance. It is also programming language-independent and defines a set of interfaces
dealing with the various events occurring during XML parsing. Similar to the DOM
Level 2 standard, the current SAX specification, which is also namespace-aware, is called
SAX-2.

When going into detail about Cocoon, we will often mention the terms DOM and SAX.
We always mean DOM Level 2 and SAX-2 because Cocoon is also name-space-aware.
Namespace-aware does not imply that you have to use namespaces, but that you can use
them. As suggested earlier in this chapter, we advise you to define a namespace and a
DTD for your XML documents in your productive web application.

Cocoon is based on the SAX model, because it is faster and uses less memory compared
to DOM. However, most applications still need to use a DOM-based approach inside
certain components, because there are times when the application will need to navigate
(and have access to) a memory-based representation of the complete data.

Apart from presenting the XML data to the application, the XML parser can also check
an XML document for validity. Using a DTD, the parser can verify an XML document.
The parser can detect whether the elements belong to the defined language and whether
they are used in a semantically correct fashion. However, for prototyping and testing (and

 48

throughout most of our Cocoon examples), you will probably not want to have your
XML document validated by the parser.

The XML parser plays a very important role. Together with the XSLT processor, it forms
the base of any XML application. Cocoon is shipped with the XML parser Xerces and the
XSLT processor Xalan, both of which are Apache projects.

Xerces: An XML Parser

The XML parser is the component that can transform a stream of XML data into
something that can be processed by another application component. The parser provides
the interfaces and functions by which the data can be accessed.

Because Cocoon is implemented in Java, the Java API for XML Processing (JAXP) from
Sun, a standardized interface for parsers, is very important here. If your Java parser
implements this standard, chances are you will be able to drop it into Cocoon and use it
instead of the provided parser if you want to. A JAXP-compliant parser implements both
the DOM and SAX parsing models.

Adhering to a standard interface is important when you look back at one of the key
requirements presented in the Chapter 1. If your customer is running a Cocoon-based
solution and someone creates the high-performance, low memory footprint,
coffee-making XML parser (OK, perhaps not the coffee-making), your customer would
expect you to be able to drop that parser into Cocoon.

Although a variety of different XML parsers are available, we will introduce you to the
XML parser used in Cocoon—Xerces. Xerces is itself an open-source project run under
the Apache umbrella. Xerces originally started out as an IBM XML technology named
XML4J and was then donated to Apache in 1999. This is something seen quite often in
open-source projects: A company starts developing an application or component and then
donates it to the open-source community.

The Xerces (named after a blue butterfly) parser supports the JAXP model and therefore
both the DOM and the SAX models. It is available in a variety of implementations.
Cocoon uses the Java implementation.

So, when you install Cocoon, you are also installing several other components, such as
Xerces. In most cases, and especially when building your first applications with Cocoon,
you will probably not encounter the parser on its own. This is one of the great advantages
of using Cocoon as a base for your XML solution:You do not have to worry about having
to program the XML parser. Cocoon does it all for you.

In order for Cocoon to be able to transform the XML data into an output format, you also
need an XSLT processor.

Xalan: An XSLT Processor

 49

Another key Apache project is Xalan. Named after a rare musical instrument, Xalan is the
component that allows XML data to be processed with XSLT style sheets.

The Xalan project originally started out as a software component written at Lotus
(LotusXSL) and was then donated to the Apache Software Foundation in 1999.

Xalan conforms to the JAXP standard, which deals with not only XML parsing but also
with XML processing. The JAXP standard defines some basic interfaces to transform
XML documents using style sheets.

Xalan also provides an XPath processor that can be used without XSLT to access XML
data based on queries. The XPath engine is important whenever you deal with DOM. You
can then use the XPath engine to access distinct nodes in your XML document for
searching or modifying. Think of XPath as the SQL of the XML world.

Cocoon uses Xalan for style sheet processing. It is not the only solution that makes use of
these freely available Apache components. Many other companies and products use
them.

Key Components

Xalan and Xerces are two components that are widely used in XML-based architectures.
They are found in specific customer solutions or inside standard applications such as
Internet application servers. Here is a brief list of companies that use one or both of these
components (based on poll results taken at JavaOne 2001 and posted to the
general@xml.apache.org mailing list in October 2001):

• Lutris: Enhydra, EAS
• Software AG: Tamino products
• BEA web server
• VeriSign: trust services
• Iona: web server
• ATG: Documentum
• Orion application server
• Open Market web server
• Attachmate solutions
• Nuance VoiceXML
• Computer Associates

Just as these commercial companies profit from new versions of Xalan and Xerces, so
does Cocoon. Instead of the efforts of many being split between several different versions
of the same component, these efforts are combined to create one version of each
component. The companies that then utilize these components can free up their resources
for other things.

mailto:general@xml.apache.org

 50

Because of the way Cocoon integrates these components, it removes the chore of having
to integrate them into an application yourself. You can therefore concentrate on building
the XML application.

Building XML Applications

Now that we have talked about what components are available, we will look at why XML
applications are well-suited to meeting the requirements we discussed in the first chapter,
such as multichannel publishing, personalizing the information we want to display, and
integrating other data sources.

Multichannel Publishing

As you saw in the customer example earlier in this chapter, XSL enables you to publish
XML data in the format of your choice, such as XHTML. The same XML data can also
be formatted into, say, Wireless Markup Language (WML) using the correct style sheet.

Due to this flexibility, it is quite easy to see how it would be possible to build a simple
application that can respond to certain data, such as the type of browser, and then select
the correct style sheet for that device based on a given configuration. Using this concept,
it is also possible to add multichannel publishing to an existing application.

Figure 2.2 shows how you can add multichannel publishing capabilities (using XML and
XSL) to your existing application. This is exactly how our first WML application, written
in ASP, worked (as we discussed in the first chapter). Using this concept (and the
Microsoft versions of the XML parser and XSLT processor), we were able to extend a
running solution and allow it to publish to a mobile phone or PDA.

Figure 2.2. Integrating multichannel publishing.

 51

In our example, the request came into the web server by way of a WAP gateway. This is
the program that converts the WAP protocol to Internet-oriented HTTP. As soon as the
request reached the ASP script, the data was extracted and sent to the legacy system using
existing components that were already part of the running application. So the new ASP
script basically wrapped around those components to convert the returned data into WML.
When the data, such as an account balance, was returned, the ASP converted that into an
XML format. Based on the browser-specific piece of information called the user agent,
which was mapped to a specific vendor and device, the ASP script selected the correct
style sheet to be used and then passed the data and the style sheet to a Microsoft
component for processing. The component transformed the data into WML, which was
then returned to the mobile device by way of the WAP gateway.

As new mobile devices became available, the only change necessary was to add to the
system a new style sheet to support that device. Of course, a default style sheet was
applied if an unknown user agent was encountered.

This example of adding multichannel publishing to a given application shows how it is
possible to flexibly format the same data into a specific output format depending on a
certain piece of information. However, a successful XML solution must also allow for the
easy integration of various data sources so that content is available for the various
publication formats.

Integrating Data Sources

Integrating diverse data sources is one of the key functions of a middleware solution.
Until the advent of XML, middleware solutions had to be able to send and receive
proprietary, often binary, data to a variety of systems.

 52

Many systems such as databases and even mainframes have already made the transition
to Internet-based XML architectures. They offer XML interfaces to their data and
therefore allow for easy integration into solutions such as Cocoon.

XML Services

Companies that provide a data-oriented service use the Internet to allow access to that
data. These services, ranging in size and color from a complete news feed to a local
weather service, are commonly used inside portals to provide the content.

These services increasingly publish their data in an XML format, making it extremely
easy to integrate the data into your own application. You’ll read more about this when
you build a sample news portal application starting in Chapter 5, “Cocoon News Portal:
Entry Version.”

Some of these formats are even standardized, meaning that a solution built to display the
news from one source can present the headlines from a completely different source with
no changes needed. Because both news services use the same format (such as News
Markup Language [NewsML]), the same style sheet can be used to format the data into
HTML.

Commercial services such as Reuters offer news in an XML format at a cost.
Noncommercial offerings such as Moreover.com provide news headlines and articles that
can be integrated into noncommercial applications and sites for free. Companies such as
the German company Onvista provide real-time stock quotes (at a cost) in XML for
access over the Internet. Many banks are already integrating these services as part of their
offerings to their customers.

As real-time information such as weather, quotes, and news becomes more popular, the
number of these services will grow and become one of the key sources of XML data over
the Net. In addition, every corporation has a lot of information already stored in databases.
So they are another key data source.

XML Databases

Another popular source of enterprise data is the database. Most database vendors offer
XML interfaces to their systems, allowing the XML data to be mapped to the underlying
relational database model they use. This form of integration is becoming popular because
the existing database does not need to be replaced. Instead, it can be integrated into a
modern middleware architecture using the new XML-based interface.

On the other hand, we are also beginning to see vendors bring out XML databases,
meaning that there is no direct mapping to the traditional table view of other databases.
Databases that offer this type of support lend themselves to integration into XML
middleware solutions, because they often allow XML concepts such as XPath to be used
to access the data directly from the database.

 53

Companies such as Microsoft and Oracle have extended their databases and application
programming languages to provide for XML data. Although they don’t change the base
structure of the database, these extensions allow the easy integration of existing databases
into an XML architecture.

The Tamino database, a product of Software AG, is a commercial native XML database.
This means that XML documents are stored in the database without first being mapped to
tables. XML query languages such as XQL can be used to access the XML inside the
database, allowing the XML architecture to be extended from the middleware into the
database. The open-source XML database Xindice is another example of a native XML
database that allows access to XML data via a programming API, command line, or
CORBA.

Apart from having information in databases, most companies have some form of
back-end system that is also a source of data for a middleware solution.

Mainframes

Although we traditionally think of a mainframe as perhaps not being the first place you
would find an XML solution, XML interfaces are often available. Combined with the
flexibility of data transport over HTTP you have an ideal data source that can be
integrated into an XML architecture.

Vendors of mainframe software such as SAP have extended their products to provide
access via XML data and standard Internet protocols such as HTTP. Corporations that
traditionally wrote their own programs, in such programming languages as COBOL, are
now offering the same data in XML structures. Access to these systems is becoming
more standardized through the use of messaging systems such as IBM’s MQSeries and
the utilization of standard protocols.

This allows the different applications running on the mainframe to be accessed via the
same interface. This greatly reduces the cost of integrating these systems. Often
corporations will already have written web applications that access data on the mainframe,
so a common middleware solution also needs to integrate these applications.

Integrating Applications

Integrating an application is more difficult than just connecting to a given data source,
because in most cases the application already contains a presentation layer and logic that
controls the application’s flow.

Depending on the type of application, there are various ways data sources can be
integrated into an XML-based architecture. If the application is very “data-centric” (such
as a report generator), the data sources can be separated from the existing application and
integrated into a new XML-based application.

 54

If the application exists as, say, an HTML-based web solution, it is also possible to
integrate these types of applications into an XML system. The HTML can be converted
to the XML format XHTML, manipulated using style sheets, and then displayed with the
same look and feel as the new applications, written using Cocoon.

Chapter 11, “Designing Cocoon Applications,” introduces building of actual applications
with Cocoon and describes some of these concepts in more detail. Because of the amount
of data and applications available, it is important that the XML middleware allows the
presentation to be personalized.

Personalizing Information

It goes without saying that everyone has a personalized view of the world. Our brains are
trained to take in the information that is important to us and to ignore what is not.

This is one of the reasons you are sometimes so overwhelmed with what you see in the
browser window when surfing the web, especially when you have no way of selecting the
information you are interested in. Apart from the content of the page, factors such as the
color or the positioning of the data can influence whether you linger on that particular
page or move on to somewhere more interesting.

It is becoming increasingly important to personalize the information you present to
someone who is using your application or viewing your web page. Apart from allowing
this to happen based on criteria you might already have stored somewhere, you also need
to allow personal configuration by the user. He might never return to your web page if
you chose blue as the background color and he hates blue.

Using XML to design your data structure and style sheets to format that data into the
desired layout makes it a lot easier to allow for the personalization of the data you
present.

You can provide different style sheets for the various browsers. You can design each
style sheet in a way that allows it to interpret data such as the browser’s language or a
color preference stored in your internal customer information.

The advantage of this method is that you do not need to alter the data structure just
because the user prefers yellow over the blue you chose. He might prefer to surf your
web site with his mobile phone instead of his PC—and you can provide for that as well
by just changing the style sheet you use for presentation.

In this book, you will build a sample application. This application, as well as some of the
examples we will show you, allows the personalization of information using Cocoon.
However, none of the advantages we just mentioned would be any good if the solution
you built was locked in to a particular operating system or IT environment.

 55

Platform-Independent Solutions

One of the major advantages of XML is the fact that it is not bound to a single platform,
nor does a single vendor control it. XML data can be read without the aid of a machine. It
can be interpreted by applications written in different programming languages and
running on completely different systems.

Add to this the availability of components for nearly every platform you can think of, and
the transport of XML data over networks using common protocols such as HTTP, and
you have a solution that is truly independent.

The integration of XML interfaces into a growing number of systems is increasing this
independence. Now, due to new protocols such as the XML-based Simple Object Access
Protocol (SOAP), the middleware can connect to systems over the Internet that might be
far removed from its location—and it can do this in a very flexible manner.

Flexibility

When using XML, you are not only independent, but also very flexible. For example, if
your application (or one component) is interested in only customer names, for example,
then you can easily extract this information from the XML document.

For example, using a style sheet, you can filter the XML document and obtain a new
XML document containing only the customer names. Or you can use the XPath engine to
get the names using a DOM representation.

In contrast to other formats, especially binary formats, you don’t have to worry about all
the other information contained in the document. You can simply ignore it.

Ignoring information reveals another important feature of XML: extensibility. Imagine
that you first designed your customer with only a name, mailing address, and email
address. Your web application runs well on top of this model until you decide to store the
fax number of each customer to send him “printed” bills.

If you had not chosen XML but a proprietary format, you would have to extend the
format and also all the components dealing with your format. If you exchanged this
format with other companies, they would have to update their components, too. And, of
course, you also would have to deal with the old model’s not having a fax number.

With XML this is much easier. You just add an optional fax number element to your
document definition. The component requiring the fax number can easily test whether it
is available, and all other components still run unchanged. So it is easy to build and
extend your XML solution to meet changing requirements.

 56

Building an XML Solution

Now you have all the basic information on XML and XSL. You know there are
components available that let you build a solution that will give you the flexibility to
publish to nearly any format you want.

But what about the components that integrate that SQL database into the same
architecture? Where is the component that lets you do user authentication in your portal
against an LDAP directory? These are key things you need when building a complete
solution.

Granted, XML is becoming increasingly popular as a way of integrating data sources,
either new or old, into modern XML middleware solutions. And, as more and more
traditional solutions migrate to an XML-based model, it will become increasingly easy to
integrate them.

However, what about all the customers who do not yet have an XML-based platform, or
XML-based mainframe architectures? The middleware solution needs to be able to
handle these as well. It needs to be able to handle them in a way that lets them be
replaced without having to change the middleware solution.

And what about Xalan and Xerces? How do you integrate them into your application?

Obviously it would be possible to do all this yourself. And indeed, for smaller, dedicated
applications, it might well be a better alternative to integrate the needed component
directly into your application. The first XML application we wrote was an extension to a
given application. It used XML and XSL to publish given data into the WML format for
mobile phones. It made sense to just use the XML components, because the other parts of
the application were already in place. However, this solution also limited the flexibility of
XML and XSL to just this one area, so all the other parts of the application remained
unchanged.

When it comes to building complete middleware solutions such as a portal, a web site
based on XML and XSL, or a reporting system that can publish to PDF or WML, there is
an easier way than integrating all the components yourself. Apache Cocoon combines all
the needed components into a ready-to-run architecture and therefore removes the need to
integrate the components into your own application. Using Cocoon, it is even possible to
build complete XML applications without writing a single line of Java code.

Apache Cocoon

Apache Cocoon is an open-source XML publishing framework that is being developed by
a group of enthusiasts all over the world. Although Cocoon started off as the project of
only one person, it has grown into an industrial-strength framework for XML
applications. Its major advantage is that it is free. This means that you do not have to pay
anything to use the software or obtain the source code. Cocoon comes with all the

 57

components you need to build different types of XML applications. You can also extend
the solution with your own components if you need to.

The Project

The Apache Cocoon Project (http://xml.apache.org/cocoon) was started in 1998 by Italian
student Stefano Mazzocchi because he was frustrated by HTML’s limitations when
redesigning the Apache web site. He decided to use XML and XSL as the basis of the
new software he wrote because it would allow him to separate the different parts of
designing a web site (content, layout, site architecture, and logic) between several people
without their interfering with each other.

Instead of writing all the necessary components in the Cocoon project, Mazzocchi
decided to use software that already existed or was being developed. Because Cocoon
uses many other software components from different Apache projects, such as Xalan and
Xerces, it also influences these projects and is itself influenced by them.

During the last part of 2001, about 2,000 people subscribed to the Cocoon project mailing
lists. Cocoon has a large following, even though the newest Cocoon version has only just
been released. Several large firms are helping develop Cocoon. This is a sign that the
project has a lot of strength and will hopefully continue for a long time.

The core Cocoon development team consists of about eight people. These developers
have the right to check in new code and, in doing so, change the code base. Many
“fringe” developers support the project by submitting new components or helping with
bug fixes.

All the developers work for free to provide new software, documentation, and support.
The complete Cocoon software is available under the Apache Software License, one of
the most common open-source licenses.

Open Source

The term open source was coined in 1998, shortly after Netscape released the source
code of its Netscape browser. Before that, the more common name for freely available
source code was “free software.” Even though the name changed, the ideals remained
pretty much the same. The goal is to provide the source of a particular application or
module so that people can modify that code and, in doing so, add value to the software.

The more governing factor when it comes to open source is that of licensing. The license
under which the source is released governs what can be done with the software. So this is
what you need to consider when deciding whether a particular project or software is right
for you.

The Apache Software Foundation authored the Apache Software License, which governs
all projects that sail under the Apache flag—or, rather, feather (see

http://xml.apache.org/cocoon

 58

http://www.apache.org). This includes the Apache Cocoon project. The Apache Software
License basically allows you to do what you want with the source code of a particular
component or project. You can use that code in your own product and still sell that
product under a commercial license.

Being able to do this is very important for many companies that are interested in using
Cocoon inside a commercial environment. Although this might seem to contradict the
open-source movement, remember that many companies support open source by allowing
developers to work on open-source projects as part of their paid time.

Using Cocoon

Using the available components we have discussed in this chapter will help you build
your own application that can harness the power of XML and XSL. However, you still
must do a lot of integration work to get the components into your application. What is
really needed is a complete framework that

• Is completely built on XML and XSL
• Is not limited to a specific operating system
• Allows easy integration into existing Internet architectures
• Encapsulates the necessary components, removing the need to integrate them into

an application architecture yourself
• Allows the integration of standard data sources such as databases and external

HTTP servers
• Allows data to be presented in a personalized way
• Offers an extensible architecture, allowing the integration of additional

components you might need to build for your environment

Summary

This chapter looked at why HTML is not an ideal format for designing the “machine
web” and how the XML family of standards has allowed data (and layout) formats to be
defined in an open and cross-platform way. XSL lets you design a way to publish your
data in various formats in a very flexible manner. Because it is standardized, XML is
supported by components that can be integrated into new applications or as extensions to
given solutions. An XML-based application can meet the many challenges facing today’s
Internet solutions. The Apache open-source project Cocoon provides an extensive
framework for XML applications. Cocoon contains the basic XML components and also
provides ways to integrate various data sources and control how the data is published in a
specific format.

The first thing you need to do to use Cocoon is install it. You will do this in the next
chapter.

http://www.apache.org/

 59

Chapter 3. Getting Started with Cocoon

Now it’s time to get your hands dirty and actually install Cocoon to find out what it
contains. Installing Cocoon is actually very easy; this chapter contains all the details you
need.

For simplicity, we assume that you will be installing Cocoon onto the same system on
which your browser is installed. This means that, in effect, the system is then both server
and client at the same time. In case the setup is different (such as if you want to install
Cocoon on a standalone server), the address you give, such as to access the samples,
needs to be adjusted from localhost:8080 to the server’s actual address. However, this
is the only difference from installing everything onto one system.

We will take a look at what is needed before you start the actual installation. Then you
will see how to install the servlet engine and then Cocoon. After everything is running,
the included samples provide some insight into what you can actually do with the
software.

Prerequisites for Installing Cocoon

For most installation scenarios, there are only two prerequisites for installing Cocoon.

First, a Java JDK must be available on the system. In writing this book, we used version
1.3.1 of the Sun JDK. The JDK can be downloaded from the Sun web site
(www.sun.com). In case you already have an older version of the JDK installed, you need
to make sure that the version is at least 1.2.2.

The most common installation environment is to run Cocoon as a servlet in a servlet
engine. If one is already installed on the target machine, you can skip the sections on
using Apache Tomcat. If no servlet engine is running, follow the step-by-step explanation
of how to obtain and install Apache Tomcat.

If Cocoon is being installed on a UNIX system, there is an additional prerequisite:
X-Windows must be installed in order for the installation to work as we describe here. If
you don’t have X-Windows, have a look at the Cocoon FAQ (on the CD or online at

http://www.sun.com/

 60

http://xml.apache.org/cocoon/faq.html) to see how you can get Cocoon running on a
“headless server.”

Step-by-Step Instructions

This section provides step-by-step instructions on installing Cocoon into an Apache
environment. We will be using the Apache Tomcat Servlet Engine. The required
components can be downloaded from their respective web sites or copied from the CD.

Using Apache Tomcat As the Servlet Engine

The first step in getting a running version of Cocoon onto your system is to install
Apache Tomcat, the servlet engine provided by Apache. As you’ve seen in previous
chapters, and as is most common in today’s Internet architectures, an Internet server
normally receives incoming HTTP requests via a web server. Depending on the web
server’s configuration, the requests are served directly by the web server itself or are
passed to a servlet so that the response can be generated dynamically.

A common setup for Cocoon is to have the web server serve the static content (such as
images) and to have Cocoon process the requests to generate the dynamic HTML
documents.

For this installation guide, we will stick with the Tomcat-only installation. Refer to the
Tomcat documentation available on the web if you want to connect Tomcat with a web
server. This method of installation means that you will send your requests directly to
Tomcat. You can do this because Tomcat comes with its own little web server. This
makes life much easier, especially when you’re just starting out with servlets and
Cocoon.

Obtaining Tomcat

You can download Tomcat from the Apache web site or copy it from the companion CD.
The Tomcat home page is located at http://jakarta.apache.org/tomcat/index.html. To
obtain a version, follow the links listed there until you arrive at a page where you can
download a binary version of Tomcat. Refer to the documentation there to determine the
exact version of Tomcat you need.

This section covers the installation of Tomcat version 3.3a. It should be easy to adapt the
following steps to different versions as they become available. However, we have
provided this version of Tomcat on the CD so that it can be used as a starting point. The
steps given here use the binary file jakarta-tomcat-3.3a.zip. We have provided additional
binary formats on the CD, and more are available from the web site.

Installing Tomcat

http://xml.apache.org/cocoon/faq.html
http://jakarta.apache.org/tomcat/index.html

 61

The next step is to unpack the downloaded file into a directory. Use the root directory of
the Windows system (C:\) and unpack the zip file below that.

As a result of unpacking the zip file, you now have a directory called
C:\jakarta-tomcat-3.3a with several subdirectories.

Setting Up the Environment

You now need to configure your environment so that, for example, the JDK can be found
when Tomcat is started. To do this, you need to set some environment parameters. How
you do this depends on what system Tomcat is running on (Windows, UNIX, Mac OS, X
Window).

The environment variable JAVA_HOME needs to be set up to point to the root directory
where the JDK was installed. Check to see which directory contains the JDK, and then
enter the following in a shell or a DOS window. Refer to your operating system’s
documentation for the exact syntax.

set JAVA_HOME=c:/jdk131
set PATH=%JAVA_HOME%\bin;%PATH%

It’s a good idea to enter these lines into a script or batch program so that you don’t have
to enter them each time you want to start Tomcat.

Starting Tomcat

The \bin directory of the Tomcat distributions contains scripts and batch files that can be
used to start and stop the servlet engine. So as soon as the environment has been set up,
you can start Tomcat by entering the following:

[Unix] bin/startup.sh
[Windows] bin\startup

The first time you start Tomcat, it takes longer before the servlet engine is ready to
process any requests. If everything goes as planned, the following output is logged to
stderr, which is by default the window Tomcat is started in:

2002-02-19 13:04:24 - Http10Interceptor: Starting on 8080
2002-02-19 13:04:24 - Ajp12Interceptor: Starting on 8007
2002-02-19 13:04:24 - Ajp13Interceptor: Starting on 8009

If this output appears, you know Tomcat is running. You can then access the start page by
entering http://localhost:8080 into your browser. For most installations, the default
Tomcat configuration works as described. Depending on the setup of the system you
installed Tomcat onto, there might be situations in which you need to alter the port

 62

number (8080 in this case) by changing the Tomcat configuration. This is explained in
the Tomcat documentation.

As soon as your request is processed, you should receive the Tomcat start page as HTML.
So, now your servlet engine is running and you can install Cocoon.

Installing Cocoon

Installing Cocoon is as easy as copying a file into a directory, because that’s all there is to
it. We have provided the Cocoon 2.0 distribution on the CD; everything you need is
contained there.

Open the binary distribution (for example, the file cocoon-2.0-bin.zip) and extract the
cocoon.war file to the webapps directory in Tomcat. Other files with a WAR extension
are already in that directory.

Next, stop and then restart the servlet engine. You can do this by first calling the
shutdown script (or batch file) in the \bin directory and then calling startup again (as
described in the preceding section).

Tomcat recognizes the new file and unpacks it below the webapps directory. After this
has happened, Cocoon is installed and ready to be used.

If you then use your browser to go to http://localhost:8080/cocoon/welcome, you
should see the Cocoon welcome page, as shown in Figure 3.1.

Figure 3.1. The Cocoon welcome page.

 63

Congratulations! Cocoon is installed and running. As you can see from the figure, there
are some interesting things you can try out immediately. You will see some examples
after we look at problems that can occur when you install and view the Cocoon samples.

Common Problems and Finding Help

Unfortunately, not every installation goes as planned. Even though the installation is not
too difficult, a variety of potential problems can occur. If an error occurs (for example,
the browser does not show what it should be showing), the first thing to check is any
additional output that Cocoon makes to either the console or the logs.

The logs can be found in the subdirectory \WEB-INF\logs. Three different logs are
contained in that directory. Each log contains messages that are specific to a certain area
of Cocoon:

• components.log: Contains certain component information (XSLT processor/
memory store).

• root.log: Contains servlet errors, and certain Avalon components log here.
• cocoon.log: Serves as the main log file. It contains the most important

information.

You can configure the detail of information contained in the logs, as you will see in
Chapter 6, “A User’s Look at the Cocoon Architecture.”

 64

Most of the difficulties encountered when you install Cocoon can be solved quite easily.
The following sections list the most common problems and provide some pointers on
solving them.

Because the Cocoon distribution we reference in this book has been available for some
time and comes complete with functioning samples, most problems at this stage are due
to conflicts in the system configuration. We provide some information at the end of this
section on obtaining more help if none of the following clears up the encountered
problem.

HSQL Errors

The HSQL database is integrated into Cocoon. It starts automatically when the servlet
engine starts Cocoon. If there are any problems with starting the database, the messages
are logged to the console. Here are a couple of tips that help you get around error
messages concerning HSQL:

• Delete the file db.backup, which is found in the subdirectory \WEB-INF\db.
• Make sure that there are not several instances of HSQL running at the same time.

If there are, alter the configuration so that each instance listens on a different port.

If none of this helps, it might be a good idea to remove the entry for HSQL from
cocoon.xconf and see if this clears up the problems. Of course, this then means that none
of the database examples will work.

Communication Between Cocoon and the Browser

After Cocoon is installed and has been started, you use a web browser to view the
documents. Several potential problems can occur in this area:

• Make sure the browser can connect to the server where Cocoon is running. This
might mean altering the proxy settings in the browser.

• The browser might cache the result of the request. If so, you need to refresh the
browser in order to get the correct output.

• An error is often the result of a typing mistake. Unfortunately, Cocoon does not
make this very clear in its error messages. The first thing you should check is that
you entered the information into the sitemap correctly. Then check the XML file
and the XSL file.

• Some browsers have problems displaying an HTML page after directly viewing
XML data (and vice versa). In this case, opening a new browser window should
fix the problem.

Hopefully this information will solve any problems you encounter using a browser to
access Cocoon.

Xerces Conflicts

 65

Cocoon comes with its own version of the Apache XML parser Xerces. Some servlet
engines also have their own version of the parser. This can cause conflicts when you start
Cocoon.

The basic solution is to make sure the servlet engine also uses the Cocoon version of
Xerces. Often you can do this by replacing the servlet version with the Xerces version
from Cocoon’s WEB-INF\lib directory.

Using a Different Servlet Engine

Unfortunately, a variety of servlet engines are available in various versions. This does not
make it easy to document how to install a servlet such as Cocoon. Even worse, there can
be quite a few differences between versions.

As Cocoon becomes adopted by more and more people, it is being installed into new
servlet engine environments. Luckily, a comprehensive guide to installing Cocoon into
different servlet engines is available in the Cocoon documentation on the CD or online at
http://xml.apache.org/cocoon/installing/index.html.

What to Do if Something Is Still Wrong

If none of the preceding information helps, and Cocoon is still not functioning correctly,
there are several ways of getting help:

• Check out the documentation provided on the CD for information that might help
(in particular, the installation guide and FAQ).

• Check out the same documentation from the Cocoon web site. It might be more
up-to-date than the CD version.

• Check the archives of the Cocoon mailing lists to see if someone else has had the
same problem.

• Post a question to the Cocoon user list to see if someone can help (but check the
archives first!).

All the web links for these sources of information are contained in Appendix C. If
everything works as planned, you can look at the samples that come with the installed
version of Cocoon.

Accessing the Samples

Your browser should be showing the Cocoon welcome page. As you can see, it is full of
examples that give you a good idea of Cocoon’s capabilities. Let’s take a look at some of
the examples that can be selected from the welcome page.

Multimedia Hello World

The first block of examples shows the various ways of presenting “Hello World.” There
are examples that present these words in HTML, WML, PDF, and other more exotic

http://xml.apache.org/cocoon/installing/index.html

 66

formats. Depending on the browser you are using and the software you have installed on
your system, you might not see all the examples in your browser.

Some of the examples, such as HTML and PDF, work on most systems. For other
examples, such as WML and VoxML, you might need to install additional software
before you get the expected result.

Documentation

This section allows you to access the complete Cocoon documentation. This is not so
much a sample as a potential lifesaver. We have also included the Cocoon documentation
on the CD so it can be referenced without requiring a running Cocoon installation.

News Feeds

This section shows some examples of fetching XML news feeds over the Internet and
then formatting them into an HTML layout. This is similar to what we will describe later
in this book when you build your own news portal.

Dynamic Content

These samples show how content that is not static can be generated using different
methods, such as by accessing a database or using JavaScript or XSP to generate the
content. Some of these examples require additional components to be installed first.

Sample Forms

The Cocoon installation comes complete with the open-source database HSQL and some
sample tables. The forms in this section show how data in different tables can be
manipulated using Cocoon.

System Pages

When Cocoon is running, it is important to be able to obtain information about the system.
These examples show what is possible in this area. They allow you to see details such as
which version of the Java virtual machine is running on the server and how much
memory is available.

One example that you should look at closely is the sample that generates an error page. It
shows how Cocoon formats and presents any error that can occur when the document
pipeline is processed. This document might become a common sight as you start adding
your own pipelines.

Completing the Sample Tour

This completes our look at some of the examples that come with Cocoon. We suggest
that you also take a look at the other examples to get a feel for what you can do with

 67

Cocoon. Don’t worry if it is not yet clear how all this works. We will delve into the
details as we progress. We will also find out how Cocoon works internally, what else you
can do with it, and how you can perhaps extend the framework with your own
components. All this information is contained in the following chapters.

But before we move on, one additional piece of information is perhaps best introduced
now, even though it is something you’ll probably better understand after finish-ing this
book and trying out the examples. This is the information you need in order to obtain a
newer version of the software than we have provided on the CD. We used version 2.0 of
Cocoon when writing this book. By the time you read this book, a newer version of the
software is sure to be available. It would be pretty mean of us not to provide a guide on
how to get the newer version.

Obtaining a Newer Version of Cocoon

The version of Cocoon on the companion CD is the released version 2.0. Because
Cocoon is constantly being developed, newer versions containing additional components
or changes will become available and can then be downloaded from the Cocoon web site.

Depending on whether a newer binary version of the software is required or whether you
perhaps want to build your own version of Cocoon from the source, you need to look at
the two different ways of finding what you need.

Downloading Binary Releases of Cocoon

The Cocoon project currently does not yet support the idea of “daily builds.” This term is
used in other projects to describe a daily binary release of the software. This release is
commonly generated automatically, and the binary version of the project is then copied to
a location that can be publicly accessed.

Binary versions of the Cocoon software are limited to actual releases. This means that it
is possible to download a version of the software that the project team has put through
certain tests and then decided that it is stable enough to be publicly announced. New
versions are announced on the Cocoon mailing list.

After the software is announced, you can download it from the Cocoon web site or from
any mirror site. It is easy to obtain a released version.

Navigate to http://xml.apache.org/cocoon/dist/ and download one of the files there.
Basically, the software on the web site is packaged in the same manner as that on the CD
version. So it should be easy to install a new version of Cocoon, because we provided a
description earlier. It is best to delete an older version before deploying the new WAR
file from the downloaded distribution.

http://xml.apache.org/cocoon/dist/

 68

Remember that some things might have changed in a newer version of Cocoon. Therefore,
you should study the documentation that goes with the release to find any differences
from the version we used for this book.

If you are feeling more adventurous and you want to build an up-to-the-minute version of
Cocoon, you need access to where the source code is stored.

Building Your Own Version of Cocoon from Source

Before we explain how to download and build the newest version from source, here are
some words of warning:You should do this only if you have extensive knowledge of
Cocoon and detailed Java know-how. In addition, the version that can be downloaded
might not be compilable or even function properly.

If this scares you off from trying, you might want to move on to Chapter 4, “Putting
Cocoon to Work,” where we look at using Cocoon’s various concepts and components to
build the first examples. However, if you are feeling brave, read on for details on the first
steps you can take to become a part of the Cocoon project. The project is always looking
for new committers, and you need to be able to compile the newest version of Cocoon in
order to become one.

In order to be able to compile the Cocoon source, you need to have a JDK set up
correctly. You must make sure that the environment variable JAVA_HOME points to the
JDK’s root directory.

Access to the Cocoon source is provided by way of CVS (Concurrent Versioning
System). The CVS server is hosted by Apache. You need a CVS client in order to be able
to access the server and download the source. More details on CVS can be found at
http://www.cvshome.org/.

Quite a few different CVS clients are available. Which one you use depends on the
operating system and personal taste. For the following explanation, we assume that the
command-line version of a CVS client is being used and that it can be started from the
command line. First you need to open a shell or command-line window, navigate to
where on the local drive you want the source to be installed, and then type the following
commands:

cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic login
(The password is: "anoncvs")
cvs -d :pserver:anoncvs@cvs.apache.org:/home/cvspublic -z3 checkout

xml-cocoon2

This creates a directory called xml-cocoon2 where the Cocoon source is checked out to.
The actual checkout process can take a while, and the Cocoon server sometimes suffers
from heavy loads. When the checkout is complete, all the Cocoon source is on the local
drive.

http://www.cvshome.org/

 69

In order to update the source to a newer version at a later date, you need to first change to
the xml-cocoon2 directory and then enter the following:

cvs -z3 update -d -P

This command updates the previously checked-out source.

Next, you need to compile the source. To do this, you need to enter a command in the
shell window:

[Unix] ./build.sh -Dinclude.webapp.libs=yes webapp

[Windows] .\build.bat -Dinclude.webapp.libs=yes webapp

If it’s successful, the compilation process creates a cocoon.war file in the subdirectory
\build\cocoon. This file can be deployed as described at the beginning of this chapter.

Some of the components in Cocoon are compiled only if additional third-party libraries
are available. More details on this and additional information on building Cocoon from
source can be found in the installation document on the CD or online at
http://xml.apache.org/cocoon/installing/index.html.

On We Go

Hopefully, you now have Cocoon up and running on your system. You might want to
take some time and explore the examples contained in the distribution before moving on
to the next chapter. There you will see how Cocoon works and how you can use the
different components and concepts to build your own examples.

However, if you are like us, you will probably want to go straight to the next chapter and
get started. That’s fine too. It’s your book, after all.

As you will see, Cocoon is capable of many different things, such as publishing XML
data in various formats, integrating data from databases, integrating scripting languages,
and accessing external data sources such as news feeds. As you move through this book,
you will build sample applications that range from the standard “Hello World” example
to a full-blown news portal, so there’s lots for you to explore. Let’s get started!

http://xml.apache.org/cocoon/installing/index.html

 70

Chapter 4. Putting Cocoon to Work

Now that you know how to install and start Cocoon, it’s time to start building your first
XML/XSL applications with it. However, before we get into the details of how to build,
say, a personalized picture gallery on the web, we first need to explain in detail how
Cocoon works and what components and concepts you can use to build these applications.
But you don’t need to start your Java programming environment. You don’t need to
develop any new components to get the examples in this chapter up and running. As
installed, Cocoon already has many components you can use, so there is no need to
develop any new ones yet. You will be doing that in Chapter 9, “Developing Components
for Cocoon.” But for now, you can use the components provided.

We have split the description into two parts. This first part contains an overview of the
Cocoon components and concepts you will use the most to build Cocoon-based
applications. The second part is in Chapter 6, “A User’s Look at the Cocoon
Architecture.” It contains more-advanced components and architectural concepts. After
we have introduced these components and concepts, we will provide some examples that
show how to put these components to work. These examples range from a simple “Hello
World” web page to the personalized picture gallery we mentioned before.

In all our examples, we assume that you have installed Cocoon as we described in the
preceding chapter. To repeat the most important details, you installed Cocoon into a
context called cocoon, and your servlet engine is accessible under the name localhost and
via port 8080. A request in the form of http://localhost:8080/cocoon/document is
therefore routed to Cocoon. If you have a different configuration, you need to adapt the
examples in this chapter to your environment.

Before writing your first Cocoon application, you need to understand what makes it so
different from other solutions, such as a web server that reads a static HTML file from
the filesystem and returns it to the browser. Because the Cocoon concept is completely
different, we need to look at Cocoon as a whole before examining the details.

Cocoon: The Big Picture

 71

Before we get into the details of the components contained in Cocoon, it is important to
understand the Cocoon architecture from a higher level. Also, now is the time for us to
define what we mean when we talk about “Cocoon.”

The Cocoon software is made up of many components. Some of these components were
developed inside the Cocoon project, and others are external components, developed
elsewhere, that have been integrated as part of the larger software bundle you installed in
the preceding chapter. Apart from the software, you also installed an application that
contains the standard Cocoon examples, the documentation, and all the necessary
configuration files.

It is important to remember that these are two separate things. If you build your own
application using the Cocoon software, you don’t need the Cocoon sample application,
and you also probably don’t want to put the Cocoon documentation on your web site.
Because you will build your own sample applications in this book, we use the term
“Cocoon” to describe the software and the configuration files you will edit to add your
own application functions.

Due to how the software was written, Cocoon can be used in various ways. The most
common way is by deploying it as a servlet inside a servlet engine, which in turn might
be connected to a web server. This is shown in Figure 4.1. Another way of using Cocoon
is through a command-line interface (CLI). This is described in detail in Chapter 6.
Because of this flexibility, Cocoon could also be hosted in different environments, such
as an Enterprise Java Bean (EJB) (although currently Cocoon has no code that lets you do
that).

Figure 4.1. Cocoon: The big picture.

 72

Cocoon offers a high degree of portability, because it can be run as a Java servlet. The
specific code that allows this conforms to version 2.2 of the servlet API and therefore
allows Cocoon to be run in environments such as a standalone servlet engine or a Java
application server based on Sun’s J2EE architecture.

Figure 4.1 shows how requests are routed through the web server and into a particular
servlet. As shown in the figure, you can have several servlets running in a servlet engine
at the same time. Configuration files that go with a servlet engine define which servlet
should handle which request. These files are normally described in the servlet-engine
documentation. When you installed Cocoon in the preceding chapter, this configuration
took place, so the servlet engine we use as an example, Apache Tomcat, is already set up
correctly.

Because Cocoon is most often used in this environment, this chapter first provides some
background information on servlets and then takes a specific look at how Cocoon handles
the requests it receives. We use the term “Cocoon servlet” to indicate that we are
discussing Cocoon running in a servlet engine.

Requests and Responses

Every web page you see in your browser is sent over the Internet using Hypertext
Transfer Protocol (HTTP). This application-level protocol is stateless and is based on the
concept of requests and responses. Because the protocol does not contain a way to
maintain a state, such as being logged in to a portal, additional mechanisms such as
cookies are used to keep track of what you are doing.

 73

In HTTP, clients—such as your web browser or your WAP phone—send requests for a
particular piece of information to the server and in return receive that information. What
the server returns could be an HTML document, a binary file such as an image, or data in
an XML format. This request-response cycle is also the basic way Cocoon works. The
incoming requests are routed via the web server through the servlet engine to the Cocoon
servlet. The request is then processed by Cocoon, and a response is generated. This
response takes the same way back: from Cocoon, to the servlet engine, to the web server,
and then back to the client.

Every request the web server receives contains several pieces of information sent by the
client. The most important part is the Uniform Resource Locator (URL), which specifies
the document the client asks the server to send. URLs are absolute specifications, such as
http://yourserver:8080/cocoon/welcome. This URL is used in the HTTP protocol to
send the request to the specified server.

Today, URL is an informal term used with popular protocols such as HTTP and FTP. It
has been superceded by the more general term Uniform Resource Identifier (URI), which
describes any addressing scheme that uses strings to identify resources. We will use the
more-correct term URI.

After the request reaches the server, the now-unimportant information, such as the server
name, is stripped from the URI/URL. This results in a relative definition:
cocoon/welcome. When using Cocoon, you have to deal with only this relative piece of
the address.

In addition to the URI, the request contains further information, such as the user agent,
which is text that the client program, such as a browser, sends. This text can be used by
the server to detect the type of client used. The next couple of pages take a closer look at
how Cocoon can act on this type of information when generating documents.

The server generates a response to every request. This response consists mainly of the
document the client requested (such as a specific HTML page). In addition, the response
contains a MIME type, which denotes the document’s type, such as HTML or PDF. The
browser uses this information to present the request in an appropriate manner.

When using Cocoon to build your own web applications, it is important to remember and
understand the request-response cycle. Cocoon can act only if it receives a request. It
cannot start doing something by itself. If no request comes in, nothing will happen on the
server or in Cocoon.

Now that you have seen that Cocoon needs a request to get going, we will take a closer
look at two terms that are often confused when talking about the Cocoon servlet—servlet
context and Cocoon context.

 74

Contexts Everywhere

One of the first things that can cause some confusion when you run Cocoon as a servlet is
the term context. Therefore, we need to sort out the different ways this word is used to
make the differences clear.

A servlet engine can run several different servlets at the same time. It therefore needs
some way of differentiating between them. It uses servlet contexts to do this. You can
think of each servlet context as being a separate web application. If several servlets are
running in the servlet engine, these are independent applications that do not interfere with
each other. Of course, these applications can communicate with each other and exchange
information if they want to.

The concept of individual servlet contexts allows you to run several Cocoon applications
at the same time on the same server. As an example of why you would want to do this,
imagine a system hosting several portals for different firms. Each firm has its own look
and feel, its own user base, and a pool of data sources that need to be integrated. Writing
a separate Cocoon-based application for each portal and running them in separate servlet
contexts makes them completely independent from one another. So, when one portal
needs to be changed, such as if a new data source is added, the other portal is unaffected.

In order for this to work, each servlet has its own separate space on the hard disk. Just as
a web server needs a physical starting point for serving HTML pages on the hard drive, a
servlet has its own physical starting point, too. This is called the Cocoon context.

Usually all servlets are installed in the same directory. A servlet engine searches on
startup automatically in this directory, which is often called webapps for web applications.
If you install Cocoon as a web archive (WAR) file, this archive is unpacked to the
webapps directory, and a directory named cocoon is created below this directory. The
cocoon directory is the Cocoon context that is used as the root to generate documents.
You can think of the Cocoon context as being its physical address on the server.

Cocoon is usually installed in a directory called webapps. After it is unpacked, you can
delete the WAR file, cocoon.war. The following shows a typical directory structure in
Tomcat 3.3 after Cocoon has been unpacked into its directory. This diagram does not
show all the directories, so don’t worry if you have more.

\tomcat
 \work
 \bin
 \lib
 \logs
 \webapps
 admin.war
 \admin
 cocoon.war
 \cocoon

 75

 cocoon.xconf
 sitemap.xmap
 \WEB-INF
 \stylesheets
 \resources
 \protected

The complete structure is made up of directories that belong to the sample application
and directories that contain the software (remember that the WAR file contains both the
Cocoon software and the examples).

The directories that belong to the examples contain the XML files and the stylesheets that
are used to transform the data into the generated documents you receive in your browser.

Generating Documents

This book uses the term document to define the result of a request that is processed by
Cocoon. This result can be an HTML page, a PDF document, WML formatted data, or
some other format that Cocoon can generate. Using stylesheets to format the data in the
output format you need lets you generate a variety of document types that can then be
served to the appropriate applications for displaying.

When you build an application with Cocoon, instead of having a static file, you define a
function that results in a particular document being generated and returned to the
application that sent the request. Therefore, you could look at a web site built with
Cocoon and not find a single HTML page on the filesystem.

Because of how Cocoon can generate the documents as and when they are requested,
there is no need to add a descriptive extension to the request (such as “.html”).

When the site administrator defines the function inside Cocoon that is responsible for
handling the generation of a particular HTML document, he must configure that function
so that it returns this format. How this is done is described in the following sections. As
soon as the function has been configured to return HTML, accessing it results in the
contents being delivered in the defined format. If the site administrator defines the same
function to return a PDF document instead, that is what is returned. Therefore, the type of
document (such as HTML or PDF) has nothing to do with its name.

One of the first things customers say when we tell them how Cocoon generates the
documents dynamically is, “That must be slow.”

It’s true that if the documents were to be generated each time you requested them,
Cocoon’s performance wouldn’t be as good as it is. However, apart from being able to
serve some types of files, such as pictures, without generating them first, Cocoon also has
a built-in configurable caching system that makes sure documents are served up as fast as
possible. How the caching system works is explained when we talk about tun-ing your
Cocoon installation in Chapter 6.

 76

The dynamic generation of documents makes web site maintenance a lot easier for the
administrator than it would be if all the documents were stored in their different formats.
If the site administrator decides to change the result of http://myserver/hello from
HTML to PDF, you don’t need to call a different link. In fact, because of how a PDF
viewer is integrated into today’s browsers, everything is automatic. All you notice is that
you receive a PDF document instead of an HTML page.

However, if you want to, you can add the descriptive extension to the document name.
Nothing in Cocoon prevents you from calling a function that returns the HTML
document hello.html. But this is not how you normally configure documents in Cocoon.
We also do not recommend that you call your documents something like foo.xml. Your
user will be worried about receiving an XML document, when in fact he will be receiving
an HTML document generated from XML. A simple descriptive name is far easier for the
user to remember.

Cocoon takes the concept of dynamic document generation one step further. Using
components that are discussed later in this chapter, you can configure Cocoon to
automatically generate the correct format on demand. This means that if you type the
address into your HTML browser, you get the HTML version. If you access the same
address using your WAP phone, you get the WML version. This is because the function
can automatically determine at runtime what format to return.

By automatically, we do not mean that Cocoon will magically provide the correct HTML
format. You still have to provide this yourself using a stylesheet. However, as soon as the
function is set up, Cocoon can automatically select the correct format, depending on the
used device or browser. Therefore, you don’t have to remember separate URIs for each
format. The fact that you can provide separate stylesheets for each format also means that
there is no need to set up a single script to handle all the formats you might require.
Remember how we told you about the difficulties of catering to the different browsers
inside a scripting language such as ASP earlier in this book?

A document is not limited to just a visual representation of the data. Using Cocoon, you
also can generate formats such as VoiceXML. This is a format that is used to describe
data in a way so that it can be spoken to the user. In other words, if the correct software is
installed on the client, you actually hear the document.

It is important to note that the document name can be more than just a logical content
name; it can consist of any of the values that are allowed in URIs, including paths and
parameters. For example,
http://myserver/userdocuments/information?subject=howto is a valid Cocoon
document name.

The logic that decides how the content should be processed can be influenced by the
parameters in the URI. Additional parameters such as the current browser you are using
or even the time of day can also play a role in the generation.

 77

This section has talked a lot about how the site administrator can set up a function to
return a specific generated document. A complete application built with Cocoon can
consist of many functions, each generating a particular document and returning it to the
browser, for example. All the available functions are contained in the central Cocoon
configuration file—the sitemap.

The Sitemap

The sitemap is the heart of Cocoon. It contains all the vital organs, such as the component
declarations and the configured functions that a Cocoon-based application provides. The
default location of the sitemap file, sitemap.xmap, is the root directory of the Cocoon
context.

In Chapter 6, we will explain how to configure the number of sitemaps and their names
and locations. However, this chapter uses only the default settings. Before we proceed,
you might want to open your directory browser and find the file sitemap.xmap.

The sitemap file in itself is an XML document. You can edit this file with any tool
suitable for editing XML documents or use your editor of choice. If you decide to edit the
XML file with a non-XML editor, just make sure you do not forget to close XML tags. If
you forget to do so, you will get an Internal Server Error when you try to access the
document.

Why? Even though the sitemap is a file you can edit, Cocoon converts it into a Java class
at runtime and then loads it. So, instead of constantly accessing the sitemap.xmap file
from the hard disk, Cocoon imports all the configuration details. Obviously, any mistake
in the XML file will hinder Cocoon in building the Java class.

The sitemap consists of two main areas: a library of available components and a
document definition area. The document definition area uses the configured components
to describe how a document should be generated. These two logical areas are split into
several sections. As you can see in Listing 4.1, the sitemap consists of five sections that
build the global structure.

Listing 4.1 The Global Sitemap Structure

<map:sitemap xmlns:map="http://xml.apache.org/cocoon/sitemap/1.0">
 <map:components/>
 <map:views/>
 <map:resources/>
 <map:action-sets/>
 <map:pipelines/>
</map:sitemap>

The sitemap uses its own namespace, which is introduced with the prefix map and is
defined as http://xml.apache.org/cocoon/sitemap/1.0. This prefix is used throughout the
sitemap. It is common to refer to the elements inside the sitemap using this prefix. This
means that you would write map:sitemap instead of sitemap.

http://xml.apache.org/cocoon/sitemap/1.0

 78

The rest of this chapter deals with the two most important sections of the sitemap: the
components and the pipelines. Using these two sections, you will be able to build your
first Cocoon applications. The other sections are described in more detail in Chapter 6.
To show you how the sitemap works and how you can use it to build your own
documents, we will use an example that you are probably familiar with.

A Closer Look at the Sitemap

The best way to introduce a new concept such as the sitemap is to start with an example
you’re familiar with and then explain how it is built using the Cocoon architecture and, in
particular, how the sitemap is configured to achieve this.

We will introduce the different types of components that are available and how they can
be combined to build pipelines. Each pipeline then results in a document being generated,
as you saw earlier.

The Hello World Example

Nearly all books start with the typical Hello World example. Because we don’t want to
break this convention, we will do exactly the same. You will add your first Cocoon
document—a simple function that produces the HTML output Hello World.

Open the sitemap with your XML tool or editor and locate the map:pipelines section.
Remember that the sitemap is an XML file and that everything is contained inside XML
tags, so you are looking for <map:pipelines>.

Because of the XML structure of the sitemap, each separate document entry is contained
in the map:pipelines section.

As soon as you have found the correct position, add the code shown in Listing 4.2 so that
they are underneath (or, in XML terminology, inside) the map:pipelines entry.

Listing 4.2 The Hello World Page

<map:pipeline>
 <map:match pattern="helloworld">
 <map:generate src="helloworld.xml"/>
 <map:transform src="helloworld2html.xsl"/>
 <map:serialize/>
 </map:match>
</map:pipeline>

Save the sitemap. For the moment, don’t worry about the details of what you are doing.
Everything will be explained after you see your first page.

Now, save the XML document shown in Listing 4.3 to the Cocoon context directory
(probably webapps/cocoon).

 79

Listing 4.3 The Hello World Document in XML

<?xml version="1.0"?>
<document>
 <text>Hello World</text>
</document>

Make sure you save the file using the name helloworld.xml. Do not forget to include the
first line. Cocoon is very strict as far as how your XML document should look. Also
make sure all your tags are closed (this is XML, remember?).

Finally, also add the stylesheet shown in Listing 4.4 to the Cocoon context directory.

Listing 4.4 The Hello World Document Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="document">
 <html>
 <body>
 <h1><xsl:value-of select="text"/></h1>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

Again, make sure you enter the XML exactly as it appears here. If you make a mistake,
you will not see the correct result. Save the file as helloworld2html.xsl.

Let’s take a quick break to double-check your work so far. Having followed the previous
steps, your directory structure now should look something like this:

\tomcat
 \work
 \bin
 \lib
 \logs
 \webapps
 admin.war
 \admin
 cocoon.war
 \cocoon
 cocoon.xconf
 sitemap.xmap
 helloworld.xml
 helloworld2html.xsl
 \WEB-INF
 \stylesheets
 \resources
 \protected

 80

Because you are running Cocoon as a servlet, you now need to start the servlet engine.
This automatically instantiates the Cocoon servlet. Next, open your favorite browser and
point it to http://localhost:8080/cocoon/helloworld. (See the preceding chapter
for more details about starting and accessing Cocoon.)

Notice that there is a slight delay before Cocoon responds with the generated page. The
reason for this is that the sitemap is transformed into a Java class and is then loaded by
Cocoon. This transformation happens whenever Cocoon detects a change in the sitemap.

Your first self-created Cocoon document should look like Figure 4.2.

Figure 4.2. The Hello World example.

If you see an error page instead of a page that looks like Figure 4.2, there might be a
mistake in one of the edited files. Also, the files need to reside in the directory structure
explained earlier. If they were saved to a different directory, Cocoon will not be able to
find them.

Cocoon can be configured to transform the sitemap in the background, so after adding a
new pipeline to the sitemap, you might need to call the link a couple of times before you
see the result.

You can also restart your servlet engine to make sure that Cocoon is loading the correct
version of the sitemap. The CD that accompanies this book includes the Hello World
example in a form that lets you integrate it into your Cocoon installation without having
to type it in yourself.

 81

Without yet going into further details, the Hello World example reads static information
from an XML document (content) and applies a stylesheet (layout) to create an HTML
representation of the content.

This simple example utilizes the most common sitemap components to generate the
document. As you can see in this example, you have to define the steps that need to
happen in order to have the document generated as requested. All this takes place in the
sitemap, so you will spend a lot of time there.

But before you get carried away and think you already know all there is to know about
generating documents with Cocoon, you must learn a bit more about sitemap basics. We
will introduce how pipelines work and will show you the different types of components
available.

Sitemap Components

The sitemap has two very important sections. One section contains the pipelines, and the
other contains the available components that can be used to build them. We will look at
the pipelines section later in this chapter. We will start with a general look at the
component types.

Cocoon provides seven different types of components. Each component type has its own
area in the sitemap, located inside the <map:components> tag:

<map:components>
 <map:generators/>
 <map:transformers/>
 <map:serializers/>
 <map:readers/>
 <map:selectors/>
 <map:matchers/>
 <map:actions/>
</map:components>

Because the sitemap is made up of nested XML tags, each subsection defines the
available components for that type (all the different transformer components are defined
inside the <map:transformers> tag). Each component has a unique name and is
associated with a Java class that implements the component.

In this chapter, you will use only the available components, as opposed to writing your
own, so you do not need to change the components section. Therefore, you can use it as a
reference to see which sitemap components are available and what their names are.

Cocoon provides a variety of components that can be used to build pipelines. A pipeline
is a processing chain that tells Cocoon what do to when a document is requested. A
pipeline can range from the very simple to the very complex. You saw a simple pipeline
in the Hello World example where an XML file was read and transformed into HTML

 82

using available components. A more-complicated pipeline would include additional
components that perhaps connect to a database to retrieve data or send an email. Figure
4.3 shows how a Cocoon pipeline is built.

Figure 4.3. A Cocoon pipeline.

The most common way of building pipelines is to define an XML processing chain that
consists of three component types: a generator, one or several transformers, and one
serializer. Because each document is generated from an XML format, you need a
component that starts the process by sending the initial XML data into the pipeline. The
generator does this.

Generator

Each pipeline in Cocoon must start with a single generator. Most often, the generator
fetches data from a data source, converts it (if necessary) into an XML format, and makes
the XML available for further processing in the chain. A simple example is a generator
that reads an XML document from the hard drive, as is the case in the Hello World
example.

Data that is accessed by a generator does not need to be in an XML format. If it’s not, the
generator simply performs all the necessary steps to create XML from whatever data
format it receives. Examples include transforming HTML to XHTML and getting emails
from a mailbox and then generating XML from the text of the emails. It is important to
remember that when the generator has finished its job, the format that is exchanged
between components in the pipeline is XML.

As soon as the generator has created or read the XML format, it passes the tags to the
components next in line in the pipeline for further processing. The next type of
component to come into play is the transformer.

Transformer

 83

The transformer is an optional component that can be used in the pipeline after the
generator. As the name states, the transformer manipulates the XML data that the
generator sends.

A transformer receives XML data from the generator or another transformer (there can be
several transformers in a pipeline). One of the most common transformers used in a
Cocoon pipeline is the xslt transformer. The xslt transformer uses XSL stylesheets to
transform XML data into an output format such as XHTML. In the Hello World example,
the generator reads a simple XML file containing just the text you want to display. The
transformer then transforms the text into XHTML using the stylesheet you wrote.

The XML data that the generator reads or creates is not limited to plain data you would
see in the end document. It can also contain tags that a transformer can act on. Therefore,
a transformer does not always have to transform the whole document. It can also focus on
just the information (or XML elements) it needs to perform its task. If the XML data
contains tags that are specific to the current transformer, it evaluates that information and
acts on it to get additional content or to manipulate the XML data in some other way.

Figure 4.4 shows a pipeline in which a sql transformer acts on specific tags. The
generator reads an XML document specifying a SQL statement for a particular database.
This statement can consist of the database’s name and the table to query. The transformer
then processes the XML, extracts the SQL query, and performs the fetch against the
database. The data received from the database is then transformed into XML and is
inserted into the XML document for further processing. The data replaces the original
command in the XML tree.

Figure 4.4. A Cocoon pipeline containing commands and data.

 84

As soon as the transformer has finished its work, it can pass the XML data to the next
component in line, which may be another transformer. This means that the file originally
read by the generator can contain specific tags for several transformers. So, apart from
having commands for the sql transformer, the XML file could also contain tags for a mail
transformer. As each transformer in line is called and processes its specific commands,
the end result is built as the command tags are replaced.

It is also possible for a component to dynamically generate commands for a component
later in the chain. This means that it is not necessary for all the commands to be in the file
the generator reads. For example, the sql transformer performs a query against the
database and, as a result, receives data it can use to form a command for the next
transformer in line, such as a mail transformer.

Let’s look at this process in more detail. The mail transformer understands commands
that tell it who to send an email to (the address) and what to put in the email (the subject).
Using the file generator, the sql transformer, and the mail transformer, you can build a
pipeline that sends an email to the administrator if the database is inaccessi-ble. In order
for this to happen, the sql transformer could automatically generate the commands for the
mail transformer into the XML tree if a connection to the database is not possible. If all
goes well and the sql transformer can get the information from the database, no command
is generated, and the mail transformer has nothing to do.

Instead of the sql transformer generating the commands, it is also possible to use a
stylesheet and the xslt transformer, located between the sql transformer and the mail
transformer, to do this. Just as a transformer can generate tags that are then sent to the
next component, so can a stylesheet.

Of course, if you are more familiar with Cocoon, you are probably mumbling something
about there being no mail transformer in Cocoon. You’re right, but you can develop one,
as you’ll see in Chapter 9.

Commonly, the pipeline builds the content starting at the generator and then by using
transformers. The last step in the pipeline is creating the layout. This is typically done
using the xslt transformer. At this point, you are still inside the pipeline processing, so
you are still dealing with XML. The consequence is that the laid-out content is also XML.
For example, in the case of HTML, it would be XHTML.

If the format you want to return to the client application is any non-XML format, such as
PDF, the result of the last transformer is an intermediate format, which is then processed
by the serializer. For PDF, this intermediate format is called XSL:FO.

Serializer

Every pipeline must end with a serializer component. To be more precise, every path
through a pipeline must end with a serializer. As you will learn later, the path through the
pipeline can be influenced. Therefore, each pipeline can have one or more exits—each

 85

with its own serializer. For now, and for the Hello World example, it is enough to
remember that each pipeline ends with a serializer.

A serializer receives the generated and transformed XML and serializes it into the format
required by the end device or program. How the serialization takes place is determined by
the type of serializer used. A serializer that is responsible for serializing HTML to the
browser may manipulate the received XHTML format so that it conforms to the HTML
standard (such as by removing a closing
 tag).

In addition to doing this, the serializer can add specific information to the document so
that the application can display the document correctly. For example, a browser needs
information such as the MIME type in order to determine whether it can display the data
itself or if it needs to start an external viewer.

If the XML format is related to the end format (such as XHTML to HTML), the serializer
does not have that much work to do. However, the process is different if the end format
differs completely from the XML-based format. Two examples of this are generating
PDF documents and JPEG images. In both cases, Cocoon can produce these formats from
an XML-based format (XSL:FO and SVG, respectively) using the appropriate serializers.

Now that you know how to build a pipeline using the different component types, you
need to be able to configure Cocoon so that a request you send will be forwarded to your
pipeline for processing. This is done using a matcher.

Matcher

The main function of the matcher is to allow document requests to be matched against a
pipeline. Imagine matchers as being the locked door to a particular pipeline, allowing
entry only if the key fits. In this case, the key is the request. Armed with the received
request, Cocoon tries each door in the sitemap to see which one can be opened.

To put it another way, the matcher acts like a giant switch/case clause or like lots of if
clauses in a programming language. If a configured matcher can match the request (or
part of the request, as you will see later), Cocoon passes the request to the enclosed
pipeline for processing. If the matcher does not fit, Cocoon tries the next one in the
pipeline until the end is reached. If no matcher fits the request, Cocoon generates an
error.

The matcher normally used is the wildcard matcher, which tests the incoming URI, or the
document name, against a particular pattern. In the Hello World example, this matcher is
used to test the document name against the static pattern helloworld.

The value that is tested by a matcher is not limited, which means that it can be any value
sent with the request but also the current time or any other piece of system information.
However, it is most common for the matcher to test against the requested document name.
As you dig deeper into Cocoon, you will learn more about matchers and how they work.

 86

Now that you’ve learned about the different types of components available, the next step
is to learn how these different components are used inside the sitemap. So it is time to
take another look at the sitemap. You might want to open the sitemap with your editor
and follow along as you read.

The Sitemap Pipelines

After the components section (map:components) in the sitemap, the most important
section is the map:pipelines section. This section defines all the processing chains for
your application. If you look at this part of the sitemap, you will see that inside the
map:pipelines tag are several map:pipeline (without the s) tags. And inside a
map:pipeline are the map:match tags. This is slightly complicated, so we need to
explain this in more detail.

The first distinction we need to make is to define the term pipeline. Each document can
actually be thought of as a pipeline through which XML flows from one component to
another. Indeed, this is the term used in Cocoon to describe figuratively the chain of
components. However, this term is also used as the name for the XML tags. These two
definitions are not quite the same.

Each pipeline (each chain of components that produces the document) is enclosed by a
map:match tag. This combination can be thought of as an individual function or virtual
URI that exists inside the Cocoon application. Because Cocoon provides the mechanisms
for creating virtual URIs, this means that the URI space does not necessarily have to
match the filesystem space on the server. (In other words, an address
http://localhost:8080/cocoon/hello does not mean that there is a file called hello
on the server.)

A collection of documents (one or more) is then enclosed by a map:pipeline tag. This
allows each collection to have its own error-handling routines. We will explain this
shortly. You can also use one or more map:pipeline sections to separate your document
pipelines into distinct groups. This can make maintaining large applications easier.

All the map:pipeline sections are then enclosed by a map:pipelines tag. To
distinguish between the different uses of the word pipeline, we will use the term pipeline
for the processing chain and map:pipeline for a section in the sitemap containing one or
more pipelines.

The map:pipelines section describes the processing flow. Each time a request comes
into Cocoon, this section is processed from top to bottom until the request has been
completely processed. The component used most often to control this flow is the matcher,
which acts as the gateway to each pipeline. A very simple flow can be created by
specifying a match directive for each possible document, as shown in Listing 4.5.

Listing 4.5 A Separate Match for Each Document

 87

<map:pipeline>
 <map:match pattern="news" type="wildcard">
 <map:generate src="news.xml" type="file"/>
 <map:transform src="news2html.xsl" type="xslt"/>
 <map:serialize type="html"/>
 </map:match>
 <map:match pattern="products" type="wildcard">
 <map:generate src="products.xml" type="file"/>
 <map:transform src="products2html.xsl" type="xslt"/>
 <map:serialize type="html"/>
 </map:match>
</map:pipeline>

The flow through such a sitemap is straightforward. Cocoon processes one match
directive after the other until a match is successful. If this match is successful, the XML
processing pipeline is then created according to the instructions inside the map:match
element. This pipeline is then executed, and the flow through the sitemap finishes.

In general, the flow through the sitemap is stopped whenever a serialize directive (or,
more technically, a map:serialize) is reached. The flow is not finished just because a
match is successful! To show this, Listing 4.6 is the same as Listing 4.5, but it uses
separate map:match elements around each component.

Listing 4.6 A Separate Match for Each Component

<map:pipeline>
 <map:match pattern="news" type="wildcard">
 <map:generate src="news.xml" type="file"/>
 </map:match>
 <map:match pattern="products" type="wildcard">
 <map:generate src="products.xml" type="file"/>
 </map:match>
 <map:match pattern="news" type="wildcard">
 <map:transform src="news2html.xsl" type="xslt"/>
 </map:match>
 <map:match pattern="products" type="wildcard">
 <map:transform src="products2html.xsl" type="xslt"/>
 </map:match>
 <map:serialize type="html"/>
</map:pipeline>

As this listing shows, you can use the match to surround a complete pipeline or an
individual entry in the pipeline. Although it is possible to surround an individual entry,
we do not recommend that you write your pipelines like this. You should use the match
to enclose the complete pipeline.

This completes our first theoretical overview of the sitemap, the various component types
available, and how a request is processed using the information inside the sitemap. Next
we will expand on this and fill in more practical details so that you can then build your
first real examples using Cocoon.

 88

Getting Practical

Now you know the theoretical basics of using Cocoon: the components and the pipelines
of the sitemap. To get more practical, we will start with a very small sitemap that
contains only what you have learned so far, and that includes the Hello World example.

But before we start, here’s a piece of advice that we mentioned when we talked about the
naming and location of the sitemap: Cocoon provides defaults for most configuration
parameters. We advise you not to change these defaults at the moment and, indeed, not to
do so before you are more comfortable with the sitemap. The default settings were
chosen to make life easier for someone starting with Cocoon, so we will stick with them
for the moment. In Listing 4.7, it is easy to find the default values, because they are
labeled as such.

Listing 4.7 The First Sitemap

<map:sitemap xmlns="http://xml.apache.org/cocoon/sitemap/1.0">
 <map:components>
 <map:generators default="file">
 <map:generate name="file"

src="org.apache.cocoon.generation.FileGenerator"/>
 </map:generators>
 <map:transformers default="xslt">
 <map:transformer name="xslt"
src="org.apache.cocoon.transformation.TraxTransformer"/>
 </map:transformers>
 <map:serializers default="html">
 <map:serializer name="html"
src="org.apache.cocoon.serialization.HTMLSerializer"
 mime-type="text/html"/>
 </map:serializers>
 <map:matchers default="wildcard">
 <map:matcher name="wildcard"
src="org.apache.cocoon.matching.WildcardURIMatcherFactory"/>
 </map:matchers>
 </map:components>
 <map:pipelines>
 <map:pipeline>
 <map:match pattern="helloworld">
 <map:generate src="helloworld.xml"/>
 <map:transform src="helloworld2html.xsl"/>
 <map:serialize/>
 </map:match>
 </map:pipeline>
 </map:pipelines>
</map:sitemap>

The first section in this listing is map:components. You then see four of the available
component types: generator, transformer, serializer, and matcher. These are the
component types you need to build the pipeline to generate a document with the name
helloworld. Each component type definition contains one component. Looking at the
map:transformers section as an example, you can see that a transformer is defined with

 89

the name "xslt". The actual pipeline, built from these components, is defined in the
map:pipeline that is inside the map:pipelines section.

Each sitemap component type is defined by an element that has the same name as the
type of the component (for example, a generator is defined inside a map:generator tag).
This tag is then nested inside an element that uses the plural of the type as its name. For
example, all available generators are defined using an individual map:generator element,
which is then inside the map:generators element. Cocoon knows only about generators
listed in this section, so these are the only ones you can use in your pipelines. This is true
for all other component types as well.

The component definitions also have more in common. Each component has two
attributes, src and name. The name is a unique name for this component type. It is used
later in the pipelines to identify exactly which component should be used. The source is
the Java class that implements the component. In addition to these two attributes, all
serializers have a third attribute in common: the mime-type. This information is used to
define the output format for the client to display the generated document correctly.

For every defined component type there is always one component that is the default
component. This means that you can leave out the details of this component in your
pipeline if you want Cocoon to use the default component. This default component is
defined by the attribute default in the section for the component type. The value of this
attribute must be the name of a defined component. For example, as you can see in
Listing 4.7, the default generator is the file generator. The standard distribution of
Cocoon defines a set of default components. For the four components we are currently
looking at, you can see the defaults in the listing. This listing uses the default components
for each component type. This set is very useful and common. So if you build only
simple pipelines, you will find that you do not have to specify the component name
because the default component is exactly the component you need.

Although at first glance this seems like a very helpful feature, it has potential dangers, too.
For example, should you need to change the default component of a particular component
type, you have to be sure to change every usage of the old default component beforehand!
Otherwise, none of your pipelines will work, because they expect a different component
to be the default. Another problem with default components is exchanging sitemap
entries. When exchanging with someone else pipeline definitions that use default
components, you need to make sure that the defaults are the same in both cases.

So, be especially careful when changing the default component settings. We suggest that
you avoid this whenever possible. This book uses the default components defined by the
Cocoon distribution.

In order to use a sitemap component inside a map:pipelines section, simply add an
element where the name is a verb derived from the component type. For example, for a
generator, use the element name generate, for a transformer, use the name transform,

 90

and so on. This makes it easier to remember the name of the XML tags you need to edit
into your pipelines when you want to use the particular components.

To specify which sitemap component of that type is to be used, you can specify the
attribute type for each component, as shown in the Listing 4.8 pipeline example. This
listing is equivalent to the map:pipeline in the preceding sitemap. However, we have
now added the type attribute to each component, although you are in fact using only the
default components.

Listing 4.8 Using Explicit Type Definitions

<map:pipeline>
 <map:match pattern="helloworld" type="wildcard">
 <map:generate src="helloworld.xml" type="file"/>
 <map:transform src="helloworld2html.xsl" type="xslt"/>
 <map:serialize type="html"/>
 </map:match>
</map:pipeline>

It is a matter of style whether you use the default types or whether you always define the
type explicitly. We suggest that when you write your first pipelines, you explicitly add
the type, even though you will probably be using the default types. As soon as you feel
more at home in the sitemap, you can omit the type attribute for the default components.
This chapter uses the standard notation, which is to omit the type attribute for default
components. If you are unsure what the default component is, just refer to the beginning
of the sitemap, where all the components are listed.

After you have defined your sitemap and listed the components you want to use, the next
step is to give them something to do. For example, in the case of the generator, you need
to tell it which XML file to read in.

Resolving Resources

Most sitemap components have something in common: They all read a resource. By
resources, we mean such things as XML documents, XSL stylesheets, script files, and
images. For all components, such a resource is usually defined by the source attribute
inside a pipeline; it is abbreviated as src. Be careful not to confuse this with the attribute
of the same name used when the component is defined in the components section.

In the Hello World example, an XML document named helloworld.xml is read by the file
generator and an XSL stylesheet named helloworld2html.xsl is read by the xslt
transformer.

All resources are defined through URIs, which are resolved by Cocoon. This includes
making relative URIs absolute for the purpose of reading resources. If the URI is relative,
Cocoon assumes that this URI points to a file on the local hard drive and resolves it to the
current sitemap context. This is usually the same as the Cocoon context (the directory

 91

where Cocoon is installed). For example, the URI helloworld.xml is resolved to a file
called helloworld.xml, which is located in the Cocoon context directory. However, if
there are subsitemaps beneath your main sitemap, this location might differ. Because you
will learn more about subsitemaps in Chapter 6, don’t worry about the sitemap context
for now. Just remember that relative URIs are resolved with respect to the Cocoon
context for the (main) sitemap.

If the URI is absolute, it is resolved using the standard mechanisms. For example,
http://databaseserver/datas/index.html is fetched using HTTP from the given
address.

In addition to the standard protocols, such as reading from a file or reading from another
web server via HTTP, Cocoon offers some additional protocols that, for example, allow
you to use the result of one pipeline as the input for a generator. These protocols and their
uses are explained in detail in Chapter 6.

Now that we have looked at a small sample sitemap, explained how components are
defined, and looked at how they can access files as input, we will now show you the main
components you will use to build your pipelines.

Common Components

We have used the Hello World example to explain the most important concepts without
actually explaining what the components do exactly. Now is the time to change that and
tell you what the components actually can do. You will see how you can read in an XML
file as the starting point for a pipeline, how you can transform that XML into a format fit
for viewing, and which serializer you can use to send HTML back to the browser. We
will also list additional components you can integrate into your own pipeline. This
chapter does not present all the components. As with the rest of our tour, we will take this
step by step. Additional components are explained in Chapter 6. You will also find a
complete list of the available components in Appendix A, “Cocoon Components.”

The generator is the starting point for each pipeline. Because the file generator can read
XML from a variety of sources, we will look at it first.

The File Generator

The most common generator is the file generator. It reads an XML document and inserts
the content of this document into the pipeline. The document can either be stored on the
server’s local hard drive or fetched from any URI.

It would really have been better to name this generator URIGenerator, but the name file
generator has a historical explanation. It was the first generator developed for Cocoon,
and it could read only files from the local hard drive. Later versions of the generator were
extended to support any form of URI, but the name never changed.

 92

In fact, all protocols supported by the Java Developer Kit (JDK) can be used to fetch
XML documents, such as HTTP and FTP. In addition, Cocoon offers several ways of
adding your own protocols to the system. The file generator can use all these protocols.
For more information on adding new protocols, see Chapter 9.

Listing 4.9 shows how the file generator is defined in the map:components section of the
sitemap and gives two examples of using it in your own pipeline. Note that this listing
and the following ones do not show complete sitemaps. You can refer to your own
sitemap or to the earlier Hello World example to see the exact syntax for each part.

Listing 4.9 The File Generator

<map:generators default="file">
 <map:generate name="file"
 src="org.apache.cocoon.generation.FileGenerator"/>
<map:generators/>
...
<map:generate src="localfile.xml"/>
<map:generate src="http://newserver/latestnews.xml"/>

The file generator is the default generator, so you do not need to specify the type
attribute for the map:generate element. The src attribute defines the location of the
XML document. As explained in the previous paragraphs, just the default generator
setting should be changed only with great care.

The html Generator

The html generator reads an HTML document from the local filesystem or from any URI.
It acts much like the file generator, except that it reads HTML documents and converts
them to XHTML using the open-source solution JTidy. JTidy is used because when the
generator passes control to the transformers, the data must be in an XML format. JTidy
checks the HTML tags and, for example, makes sure that each opening tag (such as
)
also has a closing tag.

The html generator can be used for legacy documents that already exist in HTML or to
integrate existing web applications into your Cocoon application. Listing 4.10 shows how
the generator is defined in the sitemap and presents two examples. Note that the type
attribute is used because the html generator is not the default transformer.

Listing 4.10 The html Generator

<map:generators>
 <map:generate name="html"
 src="org.apache.cocoon.generation.HTMLGenerator"/>
</map:generators>
...
<map:generate src="localfile.html" type="html"/>
<map:generate src="http://oldserver/legacy.html" type="html"/>

 93

Therefore, when using the html generator, you have to specify the type attribute with a
value of html and also remember the src attribute, which defines the HTML document’s
location. This document can either reside on the filesystem or be accessible via HTTP or
some other protocol.

Apart from loading an XML or HTML file as the input for the pipeline, you also might
want to access other available data and present that. The following generators provide an
easy way to do that.

The Directory Generator and the Image Directory Generator

The directory generator and the image directory generator read the content of a directory
on the local hard drive and generate an XML representation of this content. Listing 4.11
shows how the two components are configured in the sitemap and how they can be used
in a pipeline.

Listing 4.11 The Directory Generator and the Image Directory Generator

<map:generators>
 <map:generate name="directory"
 src="org.apache.cocoon.generation.DirectoryGenerator"/>
 <map:generate name="imagedirectory"
 src="org.apache.cocoon.generation.ImageDirectoryGenerator"/>
</map:generators>
...
<map:generate src="stylesheets" type="directory"/>
<map:generate src="stylesheets" type="imagedirectory">
 <map:parameter name="depth" value="2"/>
</map:generate>

The node of the generated document is normally the directory element. A directory
node can contain zero or more file or directory nodes. A file node has no children,
whereas a directory node can have the same sorts of children. Each node contains the
following attributes:

• name: The name of the file or directory.
• lastModified: The time the file was last modified, measured as the number of

milliseconds since 00:00:00 GMT, January 1, 1970. This measurement is based
on the Java implementation for the calculation of time.

• date (optional): The time the file was last modified, in a more human-readable
form.

All generated elements have the namespace http://apache.org/cocoon/directory/2.0. The
root directory node has the attribute requested with the value true.

The following parameters can be specified in the pipeline for the directory from which
the information is to be generated:

http://apache.org/cocoon/directory/2.0

 94

• depth (optional): Sets how deep the directory generator should delve into the
directory structure. The default value is 1, which means that only the contents of
the starting directory are returned.

• dateFormat (optional): Sets the format for the date attribute of each node. This
format is taken directly from standard Java. For more information, take a look at
the java.text.SimpleDateFormat class. If no format is specified, the default
format is used.

• root (optional): The root pattern.
• include (optional): A pattern describing the files to be included.
• exclude (optional): A pattern specifying the files to be excluded.

For example, the directory generator has produced the XML shown in Listing 4.12 from a
directory called stylesheets.

Listing 4.12 Sample Output for the Directory Generator

<dir:directory xmlns:dir="http://apache.org/cocoon/directory/2.0"
 name="stylesheets"
 lastModified="999425490000"
 date="02.09.01 12:11"
 requested="true">
 <dir:directory name="sites"
 lastModified="999425490000"
 date="02.09.01 12:11"/>
 <dir:file name="dynamic-page2html.xsl"
 lastModified="999425490000"
 date="02.09.01 12:11"/>
 <dir:file name="simple-xml2html.xsl"
 lastModified="999425490000"
 date="02.09.01 12:11"/>
</dir:directory>

The image directory generator extends the directory generator. The generated XML
contains more information if the directory contains images. The following attributes are
added for images:

• width (optional): The width of the image if it is an image file.
• height (optional): The height of the image if it is an image file.

If you want to use the directory generator, the type of the generate directive is simply
directory. For the image directory generator, this is imagedirectory.

After you have generated some information about the directories on your system, another
helpful pipeline to write is one that provides some details about the request you sent to
Cocoon.

The Request Generator

 95

The request generator uses the current request to produce XML data. When a document is
requested from Cocoon, the device sends a request to Cocoon. Besides containing the
name of the requested document, the request also contains additional information, such as
various connection parameters and the type of browser used.

This generator converts some of the information contained in the request into structured
XML. In contrast to the other generators described so far, the output of this generator is
not static. If the same document is processed, the file generator reads the same XML
document on each call and produces the same output. The output of the request generator
might be different on each call, because the data in the request will change.

If you want to use the request generator, the type attribute of the generate directory must
be set to request, as shown in Listing 4.13. It shows the configuration in the sitemap and
its use in a pipeline.

Listing 4.13 The Request Generator

<map:generators>
 <map:generate name="request"
 src="org.apache.cocoon.generation.RequestGenerator"/>
</map:generators>
...
<map:generate src="optional_source" type="request"/>
<map:generate type="request">
 <map:parameter name="test" value="yes"/>
</map:generate>

One sample usage shows the specification of an src attribute for the generator. The value
of this parameter is included in the output as an attribute of the root element. As shown in
Listing 4.14, which is the result of the second sample usage, the request generator uses
the namespace http://xml.apache.org/cocoon/requestgenerator/2.0 for the tags it
generates.

Listing 4.14 Sample Output for the Request Generator

 <?xml version="1.0" encoding="UTF-8"?>
 <!-- The root element is request. The target attribute is the requested URI
 and the source attribute is the optional source attribute of the sitemap
 entry for this pipeline. -->
 <request target="/cocoon/request" source=""
 xmlns="http://xml.apache.org/cocoon/requestgenerator/2.0">
 <!-- First the headers: -->
 <requestHeaders>
 <header name="accept-language">de</header>
 <header name="connection">Keep-Alive</header>
 <header name="accept">image/gif, image/x-xbitmap, image/jpeg,

/</header>
 <header name="host">thehost.serving.cocoon2</header>
 <header name="accept-encoding">gzip, deflate</header>
 <header name="user-agent">Browser User Agent</header>

http://xml.apache.org/cocoon/requestgenerator/2.0

 96

 <header
name="referer">http://thehost.serving.cocoon2/cocoon/welcome</heade
r>

 </requestHeaders>

 <!-- All request parameters: -->
 <requestParameters>
 <!-- Create a parameter element for each parameter -->
 <parameter name="login">
 <!-- Create a value element for each value -->
 <value>test</value>
 </parameter>
 </requestParameters>

 <!-- All configuration parameters: -->
 <configurationParameters>
 <!-- Create a parameter element for each parameter specified in the

pipeline
 for this generator-->
 <parameter name="test">yes</parameter>
 </configurationParameters>
</request>

As you can see in this output, the XML document has three different sections:
requestHeaders, requestParameters, and configurationParameters.

The first section contains all headers sent by the browser or device. This includes the user
agent, which can be used to determine the type of device.

The request parameters are all the parameters sent with the request. For each parameter, a
new subtree starting with the element parameter is created. The attribute name contains
the name of the parameter. For each of this parameter’s values, a separate subtree with
the element value is created. This value element contains the value as a text node.

The last section contains all parameters defined for the request generator in the pipeline.
Each parameter has its own parameter element. The attribute name holds the parameter’s
name, and the value is enclosed by the parameter’s tag. The second pipeline in the
example uses such a parameter, called test. The generated XML document contains one
entry for this parameter with the value yes.

To obtain more information on your system, Cocoon provides a generator that you can
use to generate the most important facts and figures.

The Status Generator

The status generator uses Cocoon’s current status or configuration to produce XML data.
Like the request generator but in contrast to the other generators discussed so far, the
output of this generator is not static, because the output contains volatile information such
as memory usage.

 97

Listing 4.15 shows the configuration in the sitemap and the use of this generator in a
pipeline. Remember that the status generator is not the default generator, so you need to
add the type attribute.

Listing 4.15 The Status Generator

<map:generators>
 <map:generate name="status"
 src="org.apache.cocoon.generation.StatusGenerator"/>
</map:generators>
...
<map:generate type="status"/>

When specifying the format of the XML it provides, the status generator uses the
namespace http://xml.apache.org/cocoon/status/2.0. As you can see from Listing 4.16, the
root element has the name statusinfo. It contains two attributes, host and date, which
contain the server’s host name and the current date, respectively.

Listing 4.16 An Example of the Status Generator

<?xml version="1.0" encoding="UTF-8"?>
<statusinfo date="16.07.2001 16:46:20" host="myhost"
 xmlns="http://apache.org/cocoon/status/2.0"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <group name="vm">
 <group name="memory">
 <value name="total"><line>11788288</line></value>
 <value name="free"><line>2778208</line></value>
 </group>
 <group name="jre">
 <value name="version"><line>1.3.0</line></value>
 <value type="simple" href="http://java.sun.com/" name="java-vendor">
 <line>Sun Microsystems Inc.</line>
 </value>
 </group>
 <group name="operating-system">
 <value name="name"><line>Windows 2000</line></value>
 <value name="architecture"><line>x86</line></value>
 <value name="version"><line>5.0</line></value>
 </group>
 <value name="classpath">
 <line>classes</line>
 <line>lib\ant.jar</line>
 <line>lib\jasper.jar</line>
 </value>
 </group>
</statusinfo>

All other information is grouped by two elements: group and value. A group collects
several pieces of information about one specific topic. The topic is defined by the
attribute name on the group. In Listing 4.16, the group of information belonging to the

http://xml.apache.org/cocoon/status/2.0

 98

Java virtual machine (vm) contains information on the memory situation, contained in the
group memory.

Each individual piece of information is contained in a value tag, with the attribute name
describing the information. Looking again at the memory group, you can see two pieces
of information—the total memory and the currently free memory.

This component is useful for viewing your system’s current status and for debugging if
something goes wrong. So, as an exercise, you might like to write a small pipeline that
includes the status generator and then view the information about your system.

This completes your first look at generators. Now we will move on to transformers and to
the transformer you will use the most in your pipelines.

The xslt Transformer

When writing your pipelines, the transformer you will use most often is probably the xslt
transformer. This is the transformer that can use a stylesheet to transform, for example,
an XML data format into an output format such as XHTML. You can also use a
stylesheet to manipulate the XML data in some other way, such as adding or removing
tags. Remember, a stylesheet transformation does not need to result in a format suitable
for viewing! The result can just as well be some other format that is more suitable for
further processing. Think back to our earlier description of the pipeline containing the sql
transformer and the mail transformer. There you saw how to use a stylesheet in the
pipeline between the two transformers to generate the necessary commands.

The xslt transformer is defined in the sitemap just as the generators you saw in the
previous sections. However, the transformers reside in their own section,
map:transformers, as shown in Listing 4.17.

Listing 4.17 The xslt Transformer

<map:transformers default="xslt">
 <map:transformer name="xslt"

src="org.apache.cocoon.transformation.TraxTransformer"/>
</map:transformers>
...
<map:transform src="localstylesheet.xsl"/>
<map:transform src="http://stylesheetserver/styles/style.xsl"/>

This sitemap excerpt shows that the xslt transformer is the default transformer, so you do
not need to specify the type attribute for the map:transform element when you use this
transformer in a pipeline. The src attribute defines the location of the XSL stylesheet. As
explained in the previous paragraphs, the default transformer setting in the sitemap
should be changed only with great care.

 99

So far, we have looked at a few different generators that provide the data that then flows
through the pipeline. Using the xslt transformer, you can then transform the data into a
format such as one suitable for viewing.

We will extend our look at the xslt transformer and the other available transformers in
Chapter 6. Now it is time to find out how you can convert a format such as XHTML into
something that the browser can display. For this you need a serializer.

The html Serializer

When you start building your first examples with Cocoon, you will use an Internet
browser to view them. The Internet browser requires the data to be in HTML so that it
can be displayed. Therefore, you need to add the html serializer as the end point of your
pipeline. The term html serializer might lead you to believe that the serializer can
generate HTML from some other format, but this is not the case.

The document itself must already contain valid XHTML. The html serializer forms
HTML from this XHTML. Because XHTML is an XML language, it is well-formed, so
all elements are closed correctly, and so on. In contrast, HTML is derived from SGML
and is not as restrictive. For example, some elements, such as the br element, are not
closed. That’s exactly the job of the html serializer. It converts the “perfect” XHTML to
the weak HTML by removing the closing br element.

Before you can use the html serializer, you must apply a stylesheet, using the xslt
transformer, to the XML document to lay out the data in XHTML. Then the serializer can
serialize that into HTML.

The output of the html serializer is text containing the HTML. In addition, the serializer
sets the document’s MIME type to text/html. Listing 4.18 shows the configuration of
the html serializer and how to use it in a pipeline. Because it is the default serializer, you
do not need to add the type attribute in the pipeline.

Listing 4.18 The html Serializer

<map:serializers default="html">
 <map:serializer name="html"
 mime-type="text/html"
 src="org.apache.cocoon.serialization.HTMLSerializer"/>
</map: serializers>
...
<map:serialize/>

Like most other serializers, the html serializer can be configured in various ways. You
can find a full description in Appendix A. But one configurable parameter is worth
mentioning here: the encoding (see Listing 4.19).

Listing 4.19 Setting the Encoding of the html Serializer

 100

<map:serializers default="html">
 <map:serializer name="html"
 mime-type="text/html"
 src="org.apache.cocoon.serialization.HTMLSerializer">
 <encoding>ISO-8859</encoding>
 </map:serializer>
</map: serializers>

Using the encoding parameter, you can define the character set used for the used for the
output document. The default is Unicode (UTF-8). Especially for non-English sites,
where many special characters are used, setting the encoding to the correct value is very
useful. This allows the client to display special characters correctly.

The setting of the encoding is applied to every use of the serializer. It is not possible to
override this setting, so your whole application uses this encoding.

Although we looked at the html serializer first, because newer versions of browsers
support the display of XML data directly, you could use a different serializer, the xml
serializer, to send the data back to your application.

The xml Serializer

The simplest serializer possible is the xml serializer. It simply generates text output from
the XML document and sets the MIME type to text/xml. It is configured in the sitemap
the same way all components are, as you can see in Listing 4.20. Note the use of the type
attribute when using the serializer in the pipeline, because it is not the default serializer.

Listing 4.20 The xml Serializer

<map:serializers>
 <map:serializer name="xml"
 mime-type="text/xml"
 src="org.apache.cocoon.serialization.XMLSerializer"/>
<map:serializers/>
...
<map:serialize type="xml"/>

Most browsers available today are able to display XML data. This brings us to the first
way of debugging pipelines. Should your pipeline not produce the output you are
expecting, one way of checking the process flow is by removing the stylesheet
transformation and then having the xml serializer send the XML to the browser, where it
is displayed as XML. To do this, just add the type attribute with a value of xml to the
map:serialize in the pipeline (you are changing the used serializer from HTML to
XML).

Because the transformation step is now omitted, the XML you receive in the browser is
the XML data that the generator read or generated. So, if the XML is as you expected,
there is probably something wrong with the stylesheet that was being used to transform
the data. You can correct the stylesheet and add the transformation step back into your

 101

pipeline. Don’t forget to change the serializer type from XML back to HTML or
whatever output format you were generating.

This brings us to the end of the description of the most common components used in a
pipeline. The next component we need to look at more closely is the component that tells
Cocoon that your pipeline can process a certain request. This is done using a matcher.

The Wildcard Matcher

As explained earlier, the default matcher is the wildcard matcher, which matches the
incoming URI against a pattern. This matcher uses common wildcards, so the pattern
doesn’t need to be static, like helloworld. You can define patterns that match against
several document names, such as all the document names that have the same prefix.

Let’s look at some of those patterns. An asterisk matches flat parts in the URI, meaning
that zero or more characters up to the occurrence of a slash. The slash is used as a path
separator. Using two asterisks matches hierarchical parts, which means zero or more
characters including slashes.

For example, assume that the document name in a request is products/books/ Cocoon and
that you have a matcher with the pattern "products/*/*". This pattern matches the
request. In the pipeline surrounded by this match, you need to know the current values of
the asterisks. To get those values, Cocoon uses a mechanism called value substitution. It
allows you to use placeholders in the pipeline that will then be replaced with the actual
values when the pipeline is called. Therefore, the matcher adds two keys/placeholders for
value substitution, 1 and 2, with the values books and Cocoon. You will learn more about
value substitution later.

If you had chosen the pattern "products/*", that would not match, because the asterisk
matches only flat parts, and "books/Cocoon" is hierarchical. The pattern "products/**"
would match, so the matcher would provide the key 1 with the value books/Cocoon.
Because the matcher is a component just like the others you have seen in this chapter, it
must be configured in the sitemap, as shown in Listing 4.21.

Listing 4.21 The Wildcard Matcher

<map:matchers default="wildcard">
 <map:matcher name="wildcard"
src="org.apache.cocoon.matching.WildcardURIMatcherFactory"/>
</map:matchers>
...
<map:match pattern="news"/>
<map:match pattern="products/**"/>
<map:macth pattern="**.product"/>

Wildcard matching, based on common wildcards, is very powerful. However, it’s also
easy to get wrong when designing your pipelines. When you start using pattern matching,

 102

it is very likely that at some point you will request a document but get a different
response than what you expected.

Let’s look at Listing 4.21. There are three matches. The first one uses the static pattern
news. This matches only if a document called news is requested. The second match
matches everything that starts with products/. The third match matches everything that
ends with .product. If a document called products/cocoon.product is requested, the
second and third matches are successful.

In these situations, the order of the matches in the sitemap is important. The rule of
thumb is that the first matcher wins, because only one can.

In many cases, this situation occurs because of using patterns that are too general. The
pattern matches more documents than you want. For example, the apparently simple
pattern "**" matches every request. If you have a request that will match more than one
pattern in your sitemap, only the first pattern will be processed. The second pattern that
would also have matched is never reached! Of course, this is true only if the first match
leads to a serializer, which stops the sitemap processing.

You have to be very careful when defining patterns. A pattern should only include the
documents that will really match. And if you add new documents to the sitemap, you
must make sure that there is not already a pattern that matches the new document name.

Now that we have finished our first look at the four different component types we started
out describing using the sitemap example with the Hello World example, now is perhaps
a good time for you to go back to that example and have another look at it in light of the
explanations we have given you in the preceding sections. Don’t worry; we will still be
here when you come back. Then we will show you how Cocoon can reuse components by
allowing their configuration.

Configurable Components

One of the goals of a component-based architecture is to be able to reuse components
instead of writing a dedicated component for each purpose. This is also true of the
Cocoon architecture and the components included. For example, Cocoon has an xml
serializer that simply serializes the processed XML to a text stream containing the XML.
However, if you want to output different XML languages, such as WML, XHTML, or
VoiceXML, these languages have different document types, different MIME types, and
perhaps different settings that might influence the layout (such as indenting). Therefore, it
might seem natural to have a separate serializer for each format, but there is an easier
way. Cocoon offers a more modular and reusable approach by allowing the xml serializer
to be configured with different parameters.

For example, the wml serializer is implemented using the xml serializer (see Listing 4.22).
In contrast to the simple xml serializer, the wml serializer gets its own configuration.
Instead of having a separate component, you can use parameters such as mime-type and

 103

doctype-public to add the configuration you need so that a device such as a mobile
phone will recognize the format and be able to display it.

Listing 4.22 The wml Serializer

<map:serializer name="wap"
 mime-type="text/vnd.wap.wml"
 src="org.apache.cocoon.serialization.XMLSerializer">
 <doctype-public>-//WAPFORUM//DTD WML 1.1//EN</doctype-public>

<doctype-system>http://www.wapforum.org/DTD/wml_1.1.xml</doctype-sy
stem>

</map:serializer>

Using the MIME type, the device can detect that the document is WML, and, using the
document type, the document you send can also be verified. When the device receives the
information about the document type, it can load the definition and check that the data it
received conforms to that description. This can be achieved by the parser loading the
DTD file from the address you configured in the example, and then using the DTD to
validate the data.

Any configuration information that is added to a component, such as the serializer, when
it is defined in the appropriate section in the pipeline is automatically available when the
component is used in the pipeline. Many Cocoon components can be configured this way.
Appendix A contains more details on the various possibilities.

Configuration parameters are valid for all instances of the component, but what about
being able to configure a component when it is used in the pipeline? You do this by
adding parameters when the component is used.

Parameters

Each sitemap component can have additional parameters in a pipeline. These parameters
can be used to configure the component for this pipeline or to control the behavior of the
specific instance.

A parameter is added to a component using the element map:parameter. This element
has two attributes: name and value. To pass a parameter called "host" with a value of
"myhost.com", you would write <map:parameter name="host"
value="myhost.com"/>. Listing 4.23 shows how to pass the parameter
use-request-parameters to the xslt transformer when it is used in a pipeline. For
example, this parameter allows the stylesheet to access the request parameters while in
the process of transforming the XML data.

Listing 4.23 Defining Parameters for a Sitemap Component

<map:generate src="helloworld.xml"/>
<map:transform src="stylesheet.xsl">

 104

 <map:parameter name="use-request-parameters" value="true"/>
</map:transform>
<map:serialize/>

Many of the components have specific parameters you can use in this way. Appendix A
contains a list of components and their parameters.

Adding parameters to a component when you use it allows very flexible pipelines to be
built, which is fine as long as they work as expected. Now is the time to introduce the
Cocoon concept that helps you when things do not function as they should: error
handling.

Error Handling

Hopefully, up until now, things have been easy. By this we mean that everything has
worked as expected, and no errors have occurred. But what if an exception does occur?
As with any other system, there are pitfalls and mistakes you can make. Here are a few:

• The requested pipeline does not exist.
• A configured generator cannot read the XML data.
• The XML file to be read does not contain valid XML.
• The configured stylesheet is missing.
• The configured component does not exist.
• The sitemap does not contain valid XML.

All these errors result in Cocoon’s being unable to process the request and an error being
returned. This error (such as sitemap handler is not available) is displayed in the
browser, along with additional information about the error. This information is generated
by the configured error-handling routines.

Each map:pipeline section can define its own error handling. In addition to the flow
definition inside a pipeline section, you can define an error handler to react to any error
that might occur during the pipeline processing.

This error handler is defined by the tag map:handle-errors and is itself an XML-based
pipeline. It is processed each time a critical error occurs, such as an HTTP timeout to get
external content, a Java exception inside a component, one of the errors just explained, or
any other error.

This error pipeline consists of only transformers and a serializer. No generator is
necessary, because the “generated XML” is constructed by the reason for the error. Thus,
this pipeline automatically has a generator called the error generator. You must not define
a generator for the error pipeline.

Apart from this, the pipeline can be built just like any other, using any sitemap
components you want, including matchers and also other components we have not yet

 105

talked about. In Listing 4.24, the pipeline uses a stylesheet to transform the error into
XHTML, and the default serializer (HTML) is then used to return the error message.

Listing 4.24 An Example of an Error Handler

<map:handle-errors>
 <map:transform src="stylesheets/error2html.xsl"/>
 <map:serialize status-code="500"/>
</map:handle-errors>

Whenever an error occurs during document processing, internally a Java exception is
raised. Cocoon catches this exception, and the error generator converts it into an XML
document.

An XML processing chain is built up by the error generator, and all sitemap components
are defined in the map:handle-errors element. Each map:pipeline section can define
its own map:handle-errors pipeline.

The error handler can now display the exception in any format by using stylesheets to
transform the XML, or it can display the same static error page indicating to the user that
something has gone wrong (see Listing 4.25).

Listing 4.25 Sample Output for the Error Generator

<?xml version="1.0" encoding="UTF-8" ?>
<error:notify error:type="error"

error:sender="org.apache.cocoon.sitemap.ErrorNotifier"
 xmlns:error="http://apache.org/cocoon/error/2.0">

 <error:title>Error creating the resource</error:title>
 <error:source>org.apache.cocoon.ProcessingException</error:source>
 <error:message>Failed to execute pipeline.</error:message>
 <error:description>org.apache.cocoon.ProcessingException:
 Failed to execute pipeline.: java.lang.RuntimeException:
 Problem in getTransformer:Error in creating Transform Handler
 </error:description>
 <error:extra

error:description="exception">org.apache.cocoon.ProcessingException
:

 Failed to execute pipeline.: java.lang.RuntimeException:
 Problem in getTransformer:Error in creating Transform Handler
 </error:extra>
</error:notify>

The XML document generated by the error generator looks similar to this output. All
elements and attributes use the namespace http://apache.org/cocoon/error/2.0. The root
element has the name error. Inside this element are several pieces of information
concerning the reason for the error, such as a title and the source. All this information can
then be transformed using a stylesheet.

http://apache.org/cocoon/error/2.0

 106

Remember that each map:pipeline section can have its own error handler. As explained
earlier, this error handler can be customized like any other XML processing pipeline
except the implicit error generator, so it is up to you to define how this error is displayed
by defining the stylesheet and the sitemap components.

For web applications, it is common to set the status-code of the response to 500. This tells
the browser that an error occurred. You can set this code by using the attribute
status-code of the serializer.

If no matching document definition is found in the sitemap for the request, Cocoon
automatically returns to the browser with a status code of 404. This code indicates that
the requested document does not exist. You can refer to the standard sitemap for
examples of how the error handling is used.

Now that you have seen how error handling works, you are well-prepared to tackle some
examples. These first examples use what you have learned so far.

Basic Examples Using Cocoon

Now, what you’ve been waiting for: It’s reader participation time. The following
examples show you how to put Cocoon to work and demonstrate its capabilities. We will
start by building a pipeline that converts someone else’s HTML to look as though it is
your own. You will then build a picture gallery and extend it so that you can present the
pictures in a personalized fashion.

As is the case with all the examples in this book, these examples should give you some
ideas for your own applications and also point you in the right direction for when you
think about what you want to do with Cocoon. We encourage you to adapt the examples
for your own use and perhaps change or add things here and there to see how Cocoon
reacts.

Someone Else’s HTML

Integrating data sources is one of Cocoon’s major strengths. A typical data source is a
web server that can already serve HTML pages. This example takes the HTML
generation from the Hello World example one step further. This time you will let
someone else generate the HTML page for you. That’s right—it’s web-napping time.
You will access someone else’s web page and then use it in your own Cocoon
application.

Of course, we have permission to use this example, and you should get permission as
well before including a remote web page in your Cocoon installation.

Listing 4.26 shows the fragment for the sitemap.

Listing 4.26 A Sitemap Fragment

 107

<map:pipeline>
 <map:match pattern="fiery">
 <map:generate

src="http://www.flatbooks.com/frameset/con_fier.htm" type="html"/>
 <map:transform src="fiery.xsl"/>
 <map:serialize/>
 </map:match>
</map:pipeline>

As you can see, it is pretty straightforward. We give the html generator the link to access
in order to obtain the web page. Then we add the xslt transformer with the appropriate
stylesheet, as shown in Listing 4.27.

Listing 4.27 The Stylesheet to Alter the Retrieved HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="table">
<html>
<center>
 <h1>Fiery Food - "found" by Cocoon</h1>
 <h3>Original here</h3>
</center>
<body bgcolor="yellow">
 <xsl:apply-templates/>
</body>
</html>
</xsl:template>

<!-- This gets rid of "dirt" in the page -->
<xsl:template match="script">
</xsl:template>
<xsl:template match="title">
</xsl:template>

<xsl:template match="td">
 <xsl:value-of select="."/>
 <p/>
</xsl:template>

</xsl:stylesheet>

Save the stylesheet in the Cocoon context directory and name it fiery.xsl. Restart Cocoon
and point your browser to http://localhost:8080/cocoon/fiery to see someone
else’s information in a completely different layout, as shown in Figure 4.5.

Figure 4.5. A stylesheet alters the layout.

 108

Cocoon accesses the web page and then formats the HTML as XHTML using JTidy.
Next, the stylesheet extracts the information from the XHTML format and adds a few
HTML tags to give the information a different look.

As you can see, extracting data from HTML pages is tricky, because it is not easy to see
what each piece of data means when it has been formatted as, say, a table. Nevertheless,
using the html generator, Cocoon provides a convenient way of including available
HTML pages in an application that might otherwise be completely built with XML and
XSL.

You can use this example and experiment with other web pages. Just change the link you
give the html generator to the page you want to access. Remove the stylesheet and change
the serializer to type xml. The XHTML representation of the page is sent to your browser.
As soon as you have it, you can design the XSL stylesheet to fit.

Picture Gallery

This example uses the imagedirectory generator to build a picture gallery from a
directory of images.

The first step is to create a directory called gallery below the Cocoon context directory.
Copy some JPEG or GIF images into this directory. Next, add the fragment shown in
Listing 4.28 to your sitemap.

Listing 4.28 A Sitemap Fragment

 109

<map:pipeline>
 <map:match pattern="gallery">
 <map:generate src="gallery" type="imagedirectory"/>
 <map:transform src="gallery.xsl"/>
 <map:serialize type="html"/>
 </map:match>
 <!-- Gallery Images -->
 <map:match pattern="gallery/**">
 <map:read src="gallery/{1}"/>
 </map:match>
</map:pipeline>

Notice that this example contains two map:match sections. The result of the first
map:match is an HTML page that presents a thumbnail representation of the pictures
stored in the directory. Because the browser loads these pictures through Cocoon, you
need to make Cocoon aware of this.

This is done by the second map:match. Here you tell Cocoon that a request for anything
below the gallery directory should be returned using the default reader. Don’t worry that
you don’t yet know what a reader is. We will explain it later. For now, just remember that
it basically just reads a file and returns it to the browser as is.

Next is a stylesheet that formats the output of the imagedirectory generator as a simple
HTML page (see Listing 4.29).

Listing 4.29 A Gallery Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dir="http://apache.org/cocoon/directory/2.0">

<xsl:template match="/">
<html>
<body>
<center>
<h1>The Gallery</h1>
</center>
<xsl:for-each select="dir:directory/dir:file">
 <img src="{/dir:directory/@name}/{@name}" width="100"

height="100"/>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

The first thing to note is the use of namespaces in this stylesheet. The imagedirectory
generator uses a distinct namespace for all the tags it returns, so the stylesheet must also
declare the namespace and use it when referencing the tags.

 110

In order to separate the pictures from one another, we opted to simply stick two spaces
between them using the XML space () notation.

Save the stylesheet to the Cocoon context directory and name it gallery.xsl. Restart
Cocoon and point your browser to http://localhost:8080/cocoon/gallery to see a
thumbnail gallery of your pictures, as shown in Figure 4.6.

Figure 4.6. The gallery.

Now that you can put your favorite pictures on the web using Cocoon, wouldn’t it be
great to add some form of personalization to your gallery?

Personalized Picture Gallery

You have set up your family picture gallery on the web. You have told all your friends
and relatives where to go to see all the great pictures. And then people start calling you
and complaining about the colors you used.

The first person who calls wants a brighter color. You start changing it, and when you are
finished, your uncle calls to say he wants darker colors. And that’s the point when you
start thinking about personalization. Let the user choose which color he sees rather than
hard-coding it and changing it every day.

Cocoon offers several ways of adding personalization. The next example uses a simple
way of doing this. We will show you some other ways when we expand our examples in
the following chapters. This brings up a point worth stressing: Due to the flexibility of the

 111

Cocoon architecture, there are often several ways of integrating a certain functionality. So,
even though we will show you one way, you can be sure that there are others.

Let’s look at the problem of choosing colors. First, you’ll add a small color chooser to the
document. This is a list of links in which each link displays the gallery in the
corresponding color. Rather than defining a separate pipeline for each color, you will
define only one pipeline and then use the color as a parameter.

To achieve this, you will use a request parameter called color. Then you can access the
gallery through http://localhost:8080/cocoon/mygallery?color=red. If no
parameter is specified, you will use a default color.

The color parameter in turn is used in the stylesheet to set the background color. As
explained, some sitemap components can be configured using parameters inside the
pipeline. The xslt transformer is one such component. When you specify the
use-request-parameters parameter, all request parameters are then available in the
stylesheet (see Listing 4.30).

Listing 4.30 A Sitemap Fragment for the Personalized Picture Gallery

<map:pipeline>
 <map:match pattern="mygallery">
 <map:generate src="gallery" type="imagedirectory"/>
 <map:transform src="mygallery.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 </map:transform>
 <map:serialize type="html"/>
 </map:match>
 <!-- Gallery Images -->
 <map:match pattern="gallery/**">
 <map:read src="gallery/{1}"/>
 </map:match>
</map:pipeline>

As shown in this sitemap fragment, the pipelines look nearly the same as in the picture
gallery, except that your document is now named mygallery and the stylesheet is called
mygallery.xsl. This stylesheet has access to a request parameter if an XSL parameter with
the same name is declared on the top level of the stylesheet. So the stylesheet looks like
Listing 4.31.

Listing 4.31 The Personalized Picture Gallery Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dir="http://apache.org/cocoon/directory/2.0">

<!-- Make the request parameter available -->
<xsl:param name="color"/>
<xsl:template match="/">

 112

<html>
 <body>
 <xsl:choose>
 <xsl:when test="$color=''">
 <xsl:attribute name="bgcolor">#FFFFFF</xsl:attribute>
 </xsl:when>
 <xsl:when test="$color='red'">
 <xsl:attribute name="bgcolor">#FF0000</xsl:attribute>
 </xsl:when>
 <xsl:when test="$color='black'">
 <xsl:attribute name="bgcolor">#000000</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="bgcolor">
 <xsl:text>#</xsl:text><xsl:value-of select="$color"/>
 </xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 <center><h1>MyGallery</h1></center>
 <xsl:for-each select="dir:directory/dir:file">
 <img src="{/dir:directory/@name}/{@name}"
 width="100" height="100"/>
 </xsl:for-each>

 I want red

 I want black

 I want grey

 I want white

 </body>
</html>
</xsl:template>
</xsl:stylesheet>

The stylesheet is also very similar to the one we used in the previous example. In addition,
it declares a global parameter named color to get the value of the request parameter with
the same name. The document’s background is set using this parameter with the
xsl:choose statement. If no parameter is defined, the background is white.

Save the stylesheet to the Cocoon root directory and name it mygallery.xsl. Restart
Cocoon and point your browser to
http://localhost:8080/cocoon/mygallery?color= followed by the color’s RGB
value, such as 333333. The results are shown in Figure 4.7.

Figure 4.7. The color gallery.

 113

This completes our first look at some examples. We will now show you some additional
components that are available in Cocoon that can be used to enhance the pipelines you
have built so far.

More Sitemap Components

So far you have learned about the most common sitemap components and how to use
them to build pipelines. But let’s extend your knowledge a bit by showing you some
more sitemap component types so that you can build more-complex pipelines. We will
look at the selector component, the action component, and the reader component. The
first two let you control what happens in your pipeline, and the reader makes it easier to
return information such as pictures.

Selectors

Like matchers, selectors are sitemap components that can be used to determine the flow
through the sitemap. The selector is a special component that allows Cocoon to
differentiate between certain aspects of the client application or system and respond to
that data. After they are placed in a map:pipeline section, selectors allow Boolean
evaluations to be performed and reactions to be configured accordingly.

The most common example of a selector is the browser selector, which allows the
sitemap flow to be dependent on the used browser or device. In fact, this selector uses the
device’s user agent to determine the client. This user agent is sent by applications such as
browsers with the request for the document.

 114

Whereas a matcher can be seen as a simple if statement, selectors can be used in rather
complex evaluations that you might be familiar with from if-elseif-else statements in
common programming languages.

As with the xsl:choose statement of the stylesheet language, you can add an arbitrary
number of test cases. Each case is added using a nested map:when element. The attribute
test contains the value that should be tested by the selector. The cases are evaluated
from top to bottom. If one case is equal, the elements inside the map:when are processed
next. All other map:whens are ignored. You can also specify a default case using the
map:otherwise element. This section is processed only if no case matches (see Listing
4.32).

Listing 4.32 A Browser Selector Example

<map:generate src="content.xml"/>
<map:select type="browser">
 <map:when test="explorer">
 <map:transform src="stylesheets/iehtml.xsl"/>
 <map:serialize/>
 </map:when>
 <map:when test="lynx">
 <map:transform src="stylesheets/text.xsl"/>
 <map:serialize type="xml"/>
 </map:when>
 <map:when test="netscape">
 <map:transform src="stylesheets/nshtml.xsl"/>
 <map:serialize/>
 </map:when>
 <map:otherwise>
 <map:transform src="stylesheets/html.xsl"/>
 <map:serialize/>
 </map:otherwise>
</map:select>

In this sample pipeline fragment, the XML file content.xml is read and then transformed
and serialized according to the used device. If the device is a browser, either Internet
Explorer or Netscape Navigator, the appropriate stylesheet is used. If the device is lynx,
the content is transformed into XML. And in all other cases, simple HTML is created.

Notice that the reading of the file content.xml is not dependent on the browser and
therefore is the same for all clients. This allows true separation of content and layout. A
complete example using this selector is described later in this chapter.

As you can see with this example, using selectors and matchers allows you to define
complex pipelines. This gives the sitemap the same flexibility you have in structured
programming languages. Another important component that increases the flexibility of
what you can do with a pipeline is the action component.

Actions

 115

The sitemap components shown so far share one common feature: They influence the
result of the request—the document. This is done either by controlling the flow or by
taking part in the XML pipeline.

When building applications, however, you often need to perform some tasks that do not
directly influence the document. For example, if you want to build a shop with Cocoon,
you might need to add a new user to your database, add items to your shop-ping cart, and
so on. That’s where actions come into the picture.

The definition of a Cocoon action is very simple: An action performs a defined task. An
action does not produce any display data and does not take part in the XML processing
pipeline. Because the possible range of actions is unlimited, nearly everything can be
done with actions. Cocoon offers several actions for accessing request information such
as cookies, for communicating with databases, and for authorizing users in a portal. An
action can also control the flow and provide information to other sitemap components.
This makes actions even more powerful.

An action is declared with the map:action element inside the map:actions element in
the sitemap. For example, <map:action name="resource-exists"
src="org.apache.cocoon.acting.ResourceExistsAction"/> defines an action
called resource-exists that is implemented by the given class. This action will be used
later in an example to test whether a given file exists on the server, before it is read,
transformed, and returned to the client application.

Another way of accessing a file is by using a component we introduced earlier in the
gallery example but did not explain further—the reader.

Readers

Up to this point, we have only dealt with sitemap components for processing XML or
controlling the processing flow. However, real-world applications often need documents
that are not XML-based, such as images, movies, or JavaScript files.

You could use generators, transformers, and serializers to produce such formats, of
course. For example, simple dynamic images can easily be built using SVG, as you will
see later in the examples. But this is not always possible and often is not desirable,
because images or movies are created with special software and are then in a binary
format. The same applies to such formats as JavaScript and Word documents.

The reader component was designed for when the document is already in the desired
presentation format. The reader simply reads a resource and then streams it, as is, back to
the device or application. In addition, the reader can set the appropriate MIME type.

So a reader component can be seen as a combination of a special generator and serializer:
The generator reads the binary format and converts it into XML, and the serializer

 116

converts this XML format back into the binary format. Thus, the reader eliminates the
need for a processing pipeline between these components.

A reader is declared with the map:reader element inside the map:readers element in the
sitemap. For example, <map:reader name="resource" src="org.apache.cocoon.
reading.ResourceReader"/> defines a reader called resource that is implemented by
the given class.

With the introduction of these new components, you are ready to take another look at the
pipelines and fill in more details on how they work.

Pipelines Revisited

When we first looked at the pipelines section in the sitemap, we talked about the concepts
that allow a request to be handled by a specific pipeline. Now we will take a more
detailed look at how a request is matched to a pipeline and how you can use the different
parts of a request inside the pipeline for greater flexibility.

Pattern Matching

The examples so far have concentrated on “direct matches.” For example, if you have
three documents called news, jobs, and products, you would create three matcher
directives—one for each document.

If you think of a real-world application, you might have hundreds or even thousands of
documents. It would be a nightmare to create a matcher directive for each available
document. In fact, the very concept of a sitemap would be questionable.

Using sophisticated matchers such as the wildcard matcher allows you to use pattern
matching based on wildcards. For example, assume that the three documents just
mentioned all create a similar pipeline: A file generator reads an XML document (called
news.xml, jobs.xml, or products.xml), the same stylesheet is used, and the same serializer
finishes the job. In this case, you can simply write one matcher directive, as shown here:

<map:match pattern="*">
 <map:generate src="{1}.xml"/>
 <map:transform src="stylesheet.xsl"/>
 <map:serialize/>
</map:match>

What happens here? The wildcard matcher uses common wildcards to test the pattern. So
matching with an asterisk matches any flat document name, which means that the
document name should not contain a path. Therefore, all three requests—jobs, news, and
products—do match.

 117

Inside the match element, you need to know what the document name is. The pattern
matcher outputs this information under a distinct key to the included components. This
key has the name 1. Using the integrated value substitution provided by Cocoon, the
document name is substituted for {1}, so either news.xml, jobs.xml, or products.xml is
read.

The pipeline continues by applying the same stylesheet to the document and then
serializing the result to HTML.

Value Substitution

Cocoon’s value-substitution mechanism (see Figure 4.8) is very useful inside a pipeline.
Actions and matchers can provide key-value pairs that can be used by all other sitemap
components.

Figure 4.8. Value substitution.

The mechanism uses scopes for the validity of key-value pairs. If an action or a matcher
provides a pair, this pair is available only for components that are inside the element of
the matcher or action. No other components have access to the pair.

The nested components can retrieve the value only if they know the key. When you write
the name of the key enclosed in curly brackets, this tag is substituted when the sitemap is
executed.

To make this as simple as possible, matchers usually enumerate their values starting with
1, but generally a matcher can define any key name.

Because actions can be a lot more complex, they do not adhere to this rule. The key
names used by actions are totally action-dependent.

So if you want to use a matcher or an action, you have to know which keys to use to
access the needed values. Otherwise, you cannot use value substitution in your pipeline.

Furthermore, it is also possible to nest these components (see Figure 4.9). For example,
you can nest two matchers. Inside the outer matcher, you can reference the value simply

 118

by using brackets: {1}. If you use the same key inside the inner matcher, you get the
value of the inner matcher.

Figure 4.9. Complex value substitution.

How can you get values from outer components? The substitution mechanism allows
paths for the keys, just as they are used for directory structures. So, using {1} refers to
the “key of current level.” Using {../1} means “key of above level,” which tries to get
the value of the outer match.

Even if the nested components use different names for their keys, you have to specify the
path for the keys. So substituting a value from a top-level component happens only if the
correct level is selected.

More About the Processing Flow

So far you have seen a simplified view of how a request flows through a sitemap. Now is
the time to extend that view by adding more details. The sitemap spawns a virtual URI
space. This space is created by the different sitemap components—most notably, the
wildcard matcher.

Because the pipelines section of the sitemap is processed top-down, the flow can be
described as follows:

• If a match directive is found, the matcher tests a value against a given pattern. If
the value matches, the directives inside the matcher are executed next, and values
from the matcher can be used by specific keys. If the value does not match, the
next directive on the same level is executed next.

• If an action directive is found, the action is executed. If the action returns keys for
value substitution, the directives inside the action are executed next. If no keys are
provided, the directive on the same level is executed next.

• If a selector directive is found, the selector performs the various test cases from
top to bottom. When a test case is verified, the directives inside this case are
executed next, and all others are ignored. If no test case matches, the default case
(if available) defines the next directives to execute.

 119

• If a generator directive is found, it builds the starting point for the XML
processing pipeline. The next directive on the same level is executed.

• If a transformer directive is found, it transforms the XML document, and the next
directive on the same level is executed.

• If a serializer directive is found, it serializes the XML document, and the
processing is finished.

• If a reader directive is found, the reader delivers the document, and the processing
is finished.

• If an error occurs, the error handler of the current map:pipeline is called.

As you can see by this description of an abstract flow through a pipeline, defining the
sitemap is just like writing a program in a structured programming language—only on a
much higher level. You have to choose the right components, and then you have to
combine them in the correct way in order to get the result you want.

When you start building more-complex applications, you will find the concepts and
components discussed in this section very helpful, because they allow you to build
pipelines that cater to a variety of requests and provide you with greater flexibility inside
them. Now is the time to present some additional components and add some examples
that use the new concepts you have just learned about.

Advanced Components and Examples

You have now learned about all of Cocoon’s important basic concepts in order to use it to
build your own web site. Now let’s use this knowledge for some more-advanced
examples that use everything we’ve talked about so far. You will see how Cocoon
provides components that let you generate PDF documents or select the correct output
format based on information that the end device or application sends you. Additional
examples will show you how to configure pipelines to generate PDF using the new
component. Then you will enhance your gallery example.

Components

When building applications that can publish to a variety of formats, it is important that
the system provide components that help you do this.

Cocoon provides components that can generate the PDF document format and JPEG
images from standardized XML formats. The selector component type allows the flow
through a pipeline to be influenced by data that has perhaps been sent with the request.
Together these components aid in the building of multichannel applications.

PDF Serializer

One of Cocoon’s most interesting capabilities is that it can generate PDF from XML data
using a stylesheet and the correct serializer. The way this works is slightly more
complicated than the examples you have seen so far, so let’s look at it in a bit more detail.

 120

The first thing to note is that Cocoon uses another Apache project to do this. The project
is called FOP (Formatting Objects to PDF). It is a Java print formatter driven by XSL
Formatting Objects (XSL:FO). As explained in Chapter 2, “Building the Machine Web
with XML,” XSL:FO is defined as part of the XSL standard.

XSL:FO is a standardized way of describing document layout. So, as soon as you have
used a stylesheet to transform your XML data into XSL:FO, you can then use a
component such as the PDF serializer to create the PDF format. The PDF serializer is a
Cocoon component that acts as a wrapper around other components from the FOP project.
This is a common way of integrating external components into Cocoon, and it allows
them to be reused. Other serializers in Cocoon can create other formats, such as
PostScript.

XSL:FO is quite complex. Indeed, we could write a book just about that. Later in this
chapter we will present a very simple example. For now, Listing 4.33 shows how the
serializer is defined in the sitemap and how you would use it in a pipeline.

Listing 4.33 FOP Serializers

<map:serializers>
 <map:serializer mime-type="application/pdf" name="fo2pdf"
src="org.apache.cocoon.serialization.FOPSerializer"/>
</map:serializers>
...
<map:serialize type="fo2pdf"/>

Remember that the serializer does not magically generate PDF. You need to use a
stylesheet and the xslt transformer to generate the XSL:FO format first.

SVG Serializer

Another sophisticated sitemap component is the svg serializer. SVG (Scalable Vector
Graphics) is a W3C standard. It is an XML language that describes graphics. The SVG
engine interprets XML documents containing SVG commands such as “Put a rectan-gle
there, fill it with red, and lay a text with this font over it.”

As with the PDF serializer, the XML data must already be in the standardized SVG
format before the serializer can act on it. Then the serializer generates a binary image
format from the SVG format. More precisely, Cocoon offers a series of serializers that
can convert SVG documents into images. Each serializer is a wrapper around
components from the Apache SVG project, Batik. Different serializers exist for each
different image format. Two are included in Cocoon by default—the svg2jpeg serializer
and the svg2png serializer, which convert SVG into JPEG or PNG. In addition, the
serializers set the correct MIME type for the images. Listing 4.34 shows how they are
defined in the sitemap and how you would use them.

Listing 4.34 SVG Serializers

 121

<map:serializers>
 <map:serializer name="svg2jpeg"
 mime-type="image/jpg"
 src="org.apache.cocoon.serialization.SVGSerializer"/>
<map:serializers/>
...
<map:serialize type="svg2jpeg"/>

This example shows the configuration of the serializer in the sitemap and how to use the
component in a pipeline. A typical use-case for the svg serializers is to dynamically
create images, such as navigation bars where you don’t know beforehand how many
entries are available or what the titles of the items are.

Browser Selector

The multichannel challenge is perhaps one of the most interesting ones that modern
application architectures face today. However, delivering the same document in different
formats is very time-consuming and error-prone if you don’t use Cocoon. If you use
Cocoon, the process becomes easier, because you can use available components to build
your multichannel application.

You define the content you want to display, write a stylesheet for each format you want
to support (such as HTML or WML), and use the browser selector to control the flow
inside the pipeline. That’s it. Adding new formats or supporting different devices that
interpret a standard slightly differently is just as easy. Just create a new stylesheet and
add it to the pipeline.

You need a way of telling Cocoon what do to for each channel. Usually the content and
logic are the same—only the layouts differ—so most of the pipeline can be reused. Only
the layout part depends on the target format. This is where the browser selector, shown in
Listing 4.35, comes into play. It allows Cocoon to choose the correct sitemap components
depending on the user agent of the browser or device.

Listing 4.35 The Browser Selector

<map:selectors default="browser">
 <map:selector name="browser"

src="org.apache.cocoon.selection.BrowserSelectorFactory"/>
 <!-- # NOTE: The appearance indicates the search order. This is very
 # important since some words may be found in more than one browser
 # description. (MSIE is presented as "Mozilla/4.0 (Compatible; MSIE
 # 4.01; ...")
 -->
 <browser name="explorer" useragent="MSIE"/>
 <browser name="pocketexplorer" useragent="MSPIE"/>
 <browser name="handweb" useragent="HandHTTP"/>
 <browser name="avantgo" useragent="AvantGo"/>
 <browser name="imode" useragent="DoCoMo"/>
 <browser name="opera" useragent="Opera"/>
 <browser name="lynx" useragent="Lynx"/>

 122

 <browser name="java" useragent="Java"/>
 <browser name="wap" useragent="Nokia"/>
 <browser name="wap" useragent="UP"/>
 <browser name="wap" useragent="Wapalizer"/>
 <browser name="mozilla5" useragent="Mozilla/5"/>
 <browser name="mozilla5" useragent="Netscape6/"/>
 <browser name="netscape" useragent="Mozilla"/>
</map:selectors>
...
<map:generate src="helloworld.xml"/>
<map:select>
 <map:when test="explorer">
 <map:transform src="stylesheets/iehtml.xsl"/>
 <map:serialize/>
 </map:when>
 <map:when test="lynx">
 <map:transform src="stylesheets/text.xsl"/>
 <map:serialize type="text"/>
 </map:when>
 <map:when test="netscape">
 <map:transform src="stylesheets/nshtml.xsl"/>
 <map:serialize/>
 </map:when>
 <map:otherwise>
 <map:transform src="stylesheets/html.xsl"/>
 <map:serialize/>
 </map:otherwise>
</map:select>

As you can see in the snippet from the sitemap, the browser selector is a configurable
component. It is configured in the map:selectors section of the sitemap. It gets a set of
definitions for the different devices and browsers available. You can also define
sym-bolic names (such as wap) for a group of browsers that have the same user agent.

When the browser selector is used in a pipline, it tests its configuration from top to
bottom. If the user agent contains the given text for a configuration entry, the browser is
detected. Otherwise, the search continues. In our example, this means that different
stylesheets are used, depending on the user agent. Note that the browser selector is the
default selector, so you do not need to add the type attribute when you use the
component in a pipeline.

Parameter Selector

Whereas the browser selector can be used to test the user agent sent by the client, the
parameter selector, shown in Listing 4.36, can test any value available in the current
sitemap pipeline.

Listing 4.36 The Parameter Selector

<map:selectors>
 <map:selector name="parameter"
src="org.apache.cocoon.selection.ParameterSelectorFactory"/>

 123

</map:selectors>
...
<map:act type="getAValueForUserName">
 <map:select type="parameter">
 <map:parameter name="parameter-selector-test" value="{userName}"/>
 <map:when test="administrator">
 <!-- This is the administrator -->
 </map:when>
 <map:otherwise>
 </map:otherwise>
 ...
 </map:select>
</map:act>

For example, using this selector you can test values set by an action or a matcher. You set
a parameter named parameter-selector-test on the selector and give it the value to
test.

For each value you want to test, create a separate map:when statement. Add a default rule
by specifying a map:otherwise section. In Listing 4.36, the fictional action
getAValueForUserName gets the name of the current user and makes it available for
nested components using the key userName. The parameter selector is nested inside the
action. It is configured with the sitemap parameter parameter-selector-test, getting
the current value for the key userName.

The following map:when statement tests this value against administrator. If it is true,
the statements inside this branch are executed. If the name is not administrator, the
map:otherwise section is processed next. So this selector helps you control the flow
through the sitemap by any value available.

Resource-Exists Action

With the resource-exists action, you can test to see whether a resource is available.
This action is very useful in combination with pattern matching. If you use the asterisk as
a pattern, remember that every document will match. (Refer to the example introduced in
the “Pattern Matching” section, in which we discussed the document news, jobs, and
products.)

The example enhanced by this action is shown in Listing 4.37. Assume that you have
only the three XML documents—news.xml, jobs.xml, and products.xml. If you request
news, jobs, or products, everything works as expected, and you get the resulting HTML
document.

If the document contact is requested, the pattern matches even though the source for this
document does not exist. The matcher does not know anything about the processing
pipeline. It can only match, and nothing more. Thus, the file generator tries to read an

 124

XML file called contact.xml that is unavailable, and an error occurs. This error continues
the processing in the error pipeline.

You can avoid this error caused by a too-generic pattern by using the resource-exists
action. This action can be used to test whether the XML file exists. Only then is the
pipeline built. If the XML file does not exist, a different XML pipeline can be processed,
generating an error page.

Listing 4.37 The resource-exists Action

<map:actions>
 <map:action name="resource-exists"
 src="org.apache.cocoon.acting.ResourceExistsAction"/>
</map:actions>
...
<map:match pattern="*">
 <map:act type="resource-exists">
 <map:parameter name="url" value="{1}.xml"/>
 <!-- It's available -->
 <map:generate src="{1}.xml"/>
 <map:transform src="stylesheet.xsl"/>
 <map:serialize/>
 </map:act>
 <!-- Not found -->
 <map:generate src="DocumentNotAvailable.xml"/>
 <map:transform src="stylesheet.xsl"/>
 <map:serialize/>
</map:match>

As you can see from Listing 4.37, the resource-exists action gets one parameter—
url. The value of this parameter is used to test whether a resource at the given location
exists. In this case, you test to see if the XML document exists. If it is available, the usual
XML processing pipeline is assembled, reading the XML document and transforming it
to HTML.

If the resource does not exist, the components nested in the pipeline are skipped, and the
processing continues right after the action. So Listing 4.37 uses a different XML
processing pipeline. This pipeline always reads the same XML document,
DocumentNotAvailable.xml, and transforms it into HTML.

So using the resource-exists action, you can interact with the document generation
and control the flow to always generate a document.

Request Parameter Action

In one of the basic examples, we showed you how to access request parameters within a
stylesheet. But you can also use request parameters in the sitemap.

 125

With the request action, shown in Listing 4.38, you have access to several pieces of
information contained in the current request. These values can then be used in the
pipeline processing. For example, a request parameter can determine which XML file
should be read, and so on.

Listing 4.38 The request Action

<map:actions>
 <map:action name="request
 src="org.apache.cocoon.acting.RequestParamAction">
</map:actions>
...
<map:act type="request">
 <map:parameter name="parameters" value="true"/>
 <map:generate src="product_{name}.xml"/>
 <map:transform src="stylesheet.xsl"/>
 <map:serialize/>
</map:act>

This action defines several keys that can be used in value substitution:

• context: The servlet’s context path. This is the part of the URI a client uses that
determines that the request should be handled by Cocoon. Usually this is
/cocoon.

• requestURI: The name of the request document without all the parameters.
• requestQuery: The request’s query string. This means all parameters that have

their values prepended with a question mark, such
as ?myparameter=avalue&name=book.

• All request parameters: If the parameter named parameters is specified with
the value true, all parameters are available for value substitution. Each parameter
can be accessed by its name.

In addition, it is possible to set default values for a request parameter. When this
parameter is not specified, the default value is used instead. This can be done by adding
parameters with the name default and then appending the parameter name. For example,
if you want to add a default value for a parameter called name, the line could look like
this: <map:parameter name="default.name" value="Cocoon Book"/>.

Resource Reader

Cocoon’s most-used and therefore default reader is the resource reader (see Listing 4.39).
It can be used to deliver any data ranging from binary to text files to the client
application.

The resource reader reads a file—on either a local or distant system—using the
appropriate protocol and then returns it unchanged to the client. In addition, it sets the
response’s MIME type according to the type of file.

 126

You can specify the optional expires parameter to set special HTTP headers, setting the
document’s validity. Using these headers, the browser can cache the document itself until
the expires date is reached. The value is in milliseconds from the time the document was
requested.

Listing 4.39 The Resource Reader

<map:readers>
 <map:reader name="resource
 src="org.apache.cocoon.reading.ResourceReader">
</map:readers>
...
<map:read src="images/background.gif"/>
<map:read src="images/background.gif"/>
 <map:parameter name="expires" value="3600000"/>
</map:read>

Listing 4.39 shows you how to configure the component in the sitemap and various ways
of using it in the pipelines.

This completes our look at some additional components. We will now put them to work
and use them in some further examples.

Examples

The following examples in this section use the new components to generate output
formats such as PDF and SVG. We will also extend the gallery example to provide
generated images and show you how you can use Cocoon to build an application that
allows files to be downloaded from a server.

Your First PDF

In this example, you will generate your first simple PDF document. As with every
example, the first step is to enter the pipeline into the sitemap, as shown in Listing 4.40.

Listing 4.40 A Pipeline Fragment

<map:pipeline>
 <map:match pattern="myfirstpdf">
 <map:generate src="myfirstpdf.xml"/>
 <map:transform src="myfirstpdf.xsl"/>
 <map:serialize type="fo2pdf"/>
 </map:match>
</map:pipeline>

This sample pipeline first reads an XML file and then uses a stylesheet to format the data
as XSL:FO. The last step in the pipeline is the fo2pdf serializer, which generates the PDF.
Next, you need the data you want to see in your document. Enter this into a new XML

 127

file using your editor of choice, and save it to the Cocoon context directory (see Listing
4.41). Make sure you name it myfirstpdf.xml.

Listing 4.41 Data for the PDF Document

<?xml version="1.0"?>
<data>
 <name>Insert your name here</name>
</data>

As you can see from the data, you are just going to generate a document that contains a
name.

Finally, Listing 4.42 shows the stylesheet that transforms the data into XSL:FO format.
The data is then serialized into PDF by the fo2pdf serializer. For this example, we have
kept the stylesheet as simple as possible. Even so, it is still quite large, and you must
enter a lot of XML in order to set up the FOP. You might want to refer to the CD that
comes with this book and copy the stylesheet into your Cocoon environment instead of
typing it in. If you do enter the code into an editor, save the complete file as
myfirstpdf.xsl.

Listing 4.42 The FOP Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <xsl:template match="/">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="page"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-before extent="3cm"/>
 <fo:region-body margin-top="3cm"/>
 <fo:region-after extent="1.5cm"/>
 </fo:simple-page-master>

 <fo:page-sequence-master master-name="all">
 <fo:repeatable-page-master-alternatives>
 <fo:conditional-page-master-reference master-name="page"

page-position="first"/>
 </fo:repeatable-page-master-alternatives>
 </fo:page-sequence-master>
 </fo:layout-master-set>

 <fo:page-sequence master-name="all">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>
 </fo:flow>

 128

 </fo:page-sequence>
 </fo:root>
 </xsl:template>

 <xsl:template match="data">
 <fo:block font-size="36pt" space-before.optimum="24pt"
text-align="center"><xsl:value-of select="name"/></fo:block>
 </xsl:template>

</xsl:stylesheet>

Now point your browser to http://localhost:8080/cocoon/myfirstpdf. If you typed
in everything correctly, you should see your first PDF document. It should look
something like Figure 4.10.

Figure 4.10. The first PDF document.

The stylesheet for this example formats the XML data into XSL:FO format. The
serializer then converts it into the PDF you see in Figure 4.10. Because the serializer
appends the correct MIME type to the PDF document, the browser knows to start the
PDF viewer application to display the document.

Being able to generate PDF on-the-fly is a very important feature when it comes to
building larger Cocoon-based applications, especially in commercial environments.
Another feature your application might need to offer is to allow users to download certain
files from the server.

Downloading

This example implements a simple download server using the components available in
Cocoon. You want to allow the user to download the file only if he knows the server’s
address and the exact filename. After you have completed this example and installed it
into your Cocoon environment, you can download a specific file via the address

 129

http://localhost:8080/cocoon/download?file=name, where the name of the file is
appended to the URI using ?file=name . So to download the file called mypicture.jpg,
you would enter the following link into your browser:
http://localhost:8080/cocoon/download?file=mypicture.jpg.

In order to build your little download server, you need to use the action component type
introduced earlier. Specifically, you will use the request action and the
resource-exists action. The first action extracts the filename from the request by
looking at the request parameter named file. The second action tests whether this file
exists.

If the file is available, a reader reads it. If it is unavailable, a simple pipeline delivering
HTML is processed which states that the file was not found on the server (see Listing
4.43).

Listing 4.43 A Pipeline Fragment

<map:pipeline>
 <map:match pattern="download">
 <map:act type="request">
 <map:parameter name="parameters" value="true"/>

 <map:act type="resource-exists">
 <map:parameter name="url" value="download/{file}"/>
 <map:read src="download/{file}"/>
 </map:act>
 <map:generate src="filenotfound.xml"/>
 <map:transform src="filenotfound2html.xsl"/>
 <map:serialize/>
 </map:act>
 </map:match>
</map:pipeline>

This pipeline example shows how the pipeline should look. You will use a simple
combination of an XML file and an XSL stylesheet to generate an error message for the
user if the file cannot be found on the server. Edit and save the XML document shown in
Listing 4.44 to the Cocoon context directory, and name it filenotfound.xml.

Listing 4.44 The XML Document filenotfound.xml

<?xml version=”1.0 ”?>
<document>
 <text>The file is not available on the server.</text>
</document>

You should also save the stylesheet shown in Listing 4.45 to the Cocoon context
directory and name ir filenotfound2html.xsl.

Listing 4.45 The XSL Stylesheet filenotfound2html.xsl

 130

<?xml version=”1.0 ”?>

<xsl:stylesheet version="1.0">
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="document">
 <html>
 <body>
 <h1><xsl:value-of select="text"/></h1>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

If the file is not found, the stylesheet formats the error message as XHTML which is then
returned to the calling application, such as the browser.

It might be a good idea to add a warning graphic to the error page when you return it to
the user. The following example shows you how to use the SVG serializers to
dynamically generate images.

SVG

The SVG serializers can be used to generate images from a textual description. You will
now use this feature to extend the image gallery example started earlier in this chapter.

You will add a link to each thumbnail that is presented as an image. In addition, only four
images will be displayed within a single document. A navigation feature with “previous”
and “next” will also be added. Figure 4.11 shows what the end result will look like.

Figure 4.11. The enhanced gallery.

 131

To start the example, let’s generate some images by creating a pipeline for all requests
that start with graphics/ (see Listing 4.46). The name following this part is used as the
text for the image. So requesting graphics/previous generates an image that has the
text “previous” on it.

Listing 4.46 A Pipeline Fragment for SVG Graphics

<map:pipeline>
 <map:match pattern="graphics/*">
 <map:generate src="svg.xml"/>
 <map:transform src="addlabel.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 <map:parameter name="label" value="{1}"/>
 </map:transform>
 <map:serialize type="svg2jpeg"/>
 </map:match>
</map:pipeline>

The pipeline for an image reads an XML document containing directives for SVG (see
Listing 4.47). These create an image consisting of the text and an ellipse around it.
Because our focus is on Cocoon and not on SVG, we will not discuss the SVG
commands in detail. To understand the example, it’s sufficient to know that the text
element prints text with the given attributes and that the ellipse command draws an
ellipse.

Listing 4.47 The SVG Document

<?xml version="1.0"?>

 132

<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="120" height="30">
 <ellipse cx="60" cy="15" rx="59" ry="15"/>
 <text style="font-family:arial; font-size:14px; font-weight:bold"
 fill="white"
 text-anchor="middle"
 x="60" y="18"><label/></text>
</svg>

Save this data as svg.xml in your Cocoon context directory. The main problem is to get
the text’s dynamic information into the read XML document. You do this using a trick.
The read XML document contains a placeholder—the label element. This placeholder is
detected by the stylesheet shown in Listing 4.48, addlabel.xsl. This stylesheet gets a
sitemap parameter called label that in turn gets the value for the text from the document
name—the part following graphics/.

Listing 4.48 The Stylesheet That Replaces the label Element

<?xml version="1.0"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
<xsl:param name="label"/>
 <xsl:template match="label">
 <xsl:value-of select="$label"/>
 </xsl:template>
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Save the stylesheet as addlabel.xsl to your Cocoon context directory. The stylesheet
accesses the parameter by defining a global parameter called label. The template rule for
the label element inserts the value of this parameter instead of the element.

You can test the image generation by invoking
http://localhost:8080/cocoon/graphics/Previous or any other text after the last
slash.

Now, let’s add these images to your gallery (see Listing 4.49). You use the normal
picture gallery as the base. As a further example (did anyone say “homework”?), you
could incorporate these additions into the personalized picture gallery.

Because you want to display only four images in a document, the pipeline and the
stylesheets need more logic. Which images should be displayed is driven by a request
parameter named page. For example, if page has the value 1, the first four images are
displayed, and so on.

Listing 4.49 A Pipeline Fragment for the Gallery

 133

<map:pipeline>
 <map:match pattern="gallery">
 <map:generate src="gallery" type="imagedirectory"/>
 <map:transform src="gallery.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 <map:parameter name="page" value="1"/>
 </map:transform>
 <map:serialize type="html"/>
 </map:match>

 <!-- Gallery Images -->
 <map:match pattern="gallery/**">
 <map:read src="gallery/{1}"/>
 </map:match>
</map:pipeline>

The stylesheet gallery.xsl uses this parameter to filter the images. The xslt transformer
has a default value for the page parameter defined in the pipeline (see Listing 4.50).

Listing 4.50 The Stylesheet for the Gallery

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dir="http://apache.org/cocoon/directory/2.0">

<xsl:param name="page"/>
<xsl:template match="/">
<html>
<body>
<center>
 <h1>The Gallery - Page <xsl:value-of select="$page"/></h1>
</center>
<xsl:variable name="count" select="count(dir:directory/dir:file)"/>
<table>
<tr>
 <xsl:for-each select="dir:directory/dir:file">
 <xsl:variable name="first" select="(($page - 1)*4)+1"/>
 <xsl:variable name="last" select="($page * 4)"/>
 <xsl:if test="position() >= $first and position() <= $last">
 <td width="130" align="middle">

 <img src="{/dir:directory/@name}/{@name}"
 width="100"
 height="100"/>

 <img border="0" src="graphics/{substring-before(@name,

'.')}"/>

 </td>
 </xsl:if>
 </xsl:for-each>
</tr>
<!-- now the navigation -->
<tr>

 134

 <td width="130"> </td>
 <td width="130">
 <xsl:choose>
 <xsl:when test="$page > 1">

 <img border="0" src="graphics/Previous" width="130"

height="30"/>

 </xsl:when>
 <xsl:otherwise>

 </xsl:otherwise>
 </xsl:choose>
 </td>
 <td width="130">
 <xsl:choose>
 <xsl:when test="($page * 4) < $count">

 <img border="0" src="graphics/Next" width="130"

height="30"/>

 </xsl:when>
 <xsl:otherwise>

 </xsl:otherwise>
 </xsl:choose>
 </td>
 <td width="130"> </td>
</tr>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

The stylesheet is now a little more complex, because it tests the page parameter and
filters the images. All images are now displayed in a table. The first row contains the
thumbnails, and the second row contains the navigation with the “previous” and “next”
links.

As with the PDF example, we realize it might be too much to edit this stylesheet’s code
yourself. Refer to the CD for this example, and copy the files to your local Cocoon
installation. Because this book can only touch on the underlying formats such as XSL:FO,
we refer you to the available literature on Internet sites for this informa-tion. You will
find a list of web sites in Appendix C, “Links on the Web.”

Summary

This chapter started by presenting an overview of Cocoon and its concepts. We showed
you how Cocoon can be run as a servlet and how you can configure it for maximum
performance. We introduced the sitemap as the central configuration file and used
examples to show how to build pipelines that can integrate various data sources and

 135

publish to a variety of formats. Additional components allow the processing flow inside a
pipeline to be controlled by parameters sent to the server or obtained elsewhere.

We also suggested that you perhaps try to change the given examples by adding
additional components or by formatting the data as some other output. Now is a good
time to reiterate that suggestion before we move on.

All in all, you have now completed the first part of the Cocoon overview from a user
perspective. The next step is to show you how you can build a real-world application with
this knowledge. We will start off slowly and then, as you learn more details about
Cocoon, enhance the application until it becomes something that perhaps you could sell.
Or give away.

 136

Chapter 5. Cocoon News Portal: Entry Version

In this chapter, you will build the first version of a Cocoon-based news portal. The goal
of this application is to show how the different concepts in Cocoon can be put to work to
build an interesting solution. The application will be built over three chapters, with each
new version of the portal adding functionality described in the preceding chapters. When
complete, the portal will allow you to log on to view the news from themes you
previously selected and view the information in various for-mats. You will also integrate
a database for storing the user profiles.

In the first version of the portal, you will build the functionality that integrates different
online news feeds into an installed version of Cocoon and show how the news data can be
formatted into HTML, WML, and PDF for viewing in a browser or on a mobile phone.

Before we start describing the various steps, we want to mention a few points before we
get started:

• You need a running version of Cocoon, as described in Chapter 3, “Getting
Started with Cocoon.”

• In order to be able to access the news sources online, you need an Internet
connection from the system on which Cocoon is running.

• If you do not have an online connection, you can use the sample data we have
provided on the CD.

This chapter starts with a description of the type of data source you will integrate into
your news portal. Then you will define and implement the layout of the published
information. The last section describes how to combine the previous points in your
application architecture.

Which Data Sources?

After defining the functionality of the first version, you will take a look at the data you
want to integrate. To make the portal interesting and up to date, you will integrate “live”
information. When a user logs on to the portal, the portal will access the news site and
fetch the news the user has requested.

 137

Many news sites already offer their information in an XML format. You will structure the
application so that you can add additional news feeds yourself as well. To do this, we
have opted for news feeds that return their data in a standard format, RSS. RSS stands for
Resource Description Framework (RDF) Site Summary. It is designed as an easy-to-use
format for syndication. The current version is 1.0, but at the time of writing the version
used the most in available feeds is 0.91. If you are interested in the exact definition of this
format, see Appendix C, “Links on the Web,” where you will find the relevant URIs.

Before you look at some actual feeds, Listing 5.1 shows the format the data will be
returned in, using the popular site linuxtoday.com as an example. Typing the URI
http://linuxtoday.com/backend/biglt.rss into your browser causes an XML file to be
returned that looks similar to Listing 5.1. Note that this is not the complete file or valid
XML—just the first part of what you would see.

Listing 5.1 Sample RSS Data

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
 "http://my.netscape.com/publish/formats/rss-0.91.dtd">
<rss version="0.91">
 <channel>
 <title>Linux Today</title>
 <link>http://linuxtoday.com</link>
 <language>en-us</language>
 <description>Linux Today News Service</description>
 
 <item>
 <title>AbiWord Weekly News #75 by Jesper Skov</title>

<link>http://linuxtoday.com/news_story.php3?ltsn=2002-01-14-004-20-
NW-SW</link>

<
description>"The Bug hunt has started; lots of fixed Bugs in this week,
and also

quite a few QAd/Closed. There's some feature improvements too (Word importer
mainly), and

David started converting the documentation to HTML."</description>
 </item>
 <item>
 <title>GNOME Summary for 2002-01-05 - 2002-01-12</title>

<link>http://linuxtoday.com/news_story.php3?ltsn=2002-01-14-003-20-
NW-GN</link>

 <description>This week: Nautilus gets newsgroup binary viewing;
Evolution 1.0.1

released, GUADEC 3 draws closer, GNOME interviews; GNOME 2.0 status report;
more.</

description>

http://linuxtoday.com/backend/biglt.rss

 138

 </item>

As you can see from this example, the RSS format is not too complex. Therefore, it is an
easy format to write a stylesheet for, as you will see later in this chapter.

When you think about using the received information in your own portal, the relevant
tags can be defined as follows:

• <title>: The name of this news channel

For each item of news, you have the following tags:

• <item>: A news item
• <title>: The title of a news item
• <link>: The link to the complete news item
• <description>: A short description of the news item

Now that you have looked at the format you will be receiving from the news sources, you
need to design the stylesheets that will format this data into the output formats you need.

Designing the Layout

As soon as you have the data side of things sorted out, you must think about the layout
you want to present. Using the sample data from the preceding section, you can design
stylesheets that will format the news into three of the most popular formats: HTML,
WML, and XSL:FO for serialization into PDF.

HTML

A news portal must be able to provide the news in an HTML format, so you need to
design a stylesheet for this purpose. Listing 5.2 shows a sample stylesheet you can use in
your application.

Listing 5.2 The Stylesheet for Formatting RSS into HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*|/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()|@*"><xsl:value-of select="."/></xsl:template>

<xsl:template match="rss">
 <table><tr><th><xsl:value-of
select="channel/title"/></th></tr>
 <xsl:apply-templates select ="channel/item"/>

 </table>
</xsl:template>

 139

<xsl:template match="item">
 <xsl:if test="position() < 6">
 <tr bgcolor="#ffffff">
 <td>
 <xsl:value-of

select="title"/></
font>

 <xsl:value-of

select="description"/></
font>
 </td>
 </tr>
 <tr bgcolor="#ffffff"><td bgcolor="#ffffff" height="5"></td></tr>
 </xsl:if>
</xsl:template>
</xsl:stylesheet>

We have kept the stylesheet very simple. You are free to extend it as you wish.
Remember, you can find all the files on the companion CD, so there is no need to type
them in if you don’t want to.

Looking at the stylesheet, you can see that the first template that does anything of interest
triggers on the rss tag. Refer back to the example data and you will see this tag near the
beginning of the file. As soon as the template is triggered on this tag, you select the title
of the channel and display it above your table. Then you add a new row to the table for
every item of news contained in the file.

If you look at the template that controls how the row is formatted, note how you check
the current position in the data file. For this example, we show how to select just the first
five items of news. Of course, you can change this number to a different value. You can
also change the font colors and sizes, so you can experiment with the look and feel of the
presentation after the first version of the portal is complete.

WML

Now that we have defined the HTML stylesheet, we will do the same for the WML
format. This format lets you view the news on a mobile phone or using any other
program that can present data formatted in WML. Again, the stylesheet is very simple, as
shown in Listing 5.3.

Listing 5.3 The Stylesheet for Formatting RSS into WML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*|/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()|@*"><xsl:value-of select="."/></xsl:template>

<xsl:template match="rss">
 <wml>
<card id="news" title="{channel/title}">

 140

 <xsl:apply-templates select="channel/item"/>
 </card>
 </wml>
</xsl:template>

<xsl:template match="item">
 <xsl:if test="position() < 6">
 <p/>
 <small><xsl:value-of select="title"/>: <xsl:value-of
select="description"/></small>

 </xsl:if>
</xsl:template>
</xsl:stylesheet>

This simple stylesheet takes the XML data and formats it into the typical card layout of a
WML page. In Listing 5.3, all the news items are formatted into one card. Of course, you
could use a separate card for each item.

So far the stylesheets have been very simple and easy to follow. The next format we will
present in the portal is PDF. To do this, we first need a stylesheet that formats the data
into the XSL:FO format.

XSL:FO (PDF)

As we have mentioned, the XSL:FO format consists of many different tags and options.
The main advantage of this format is that it allows the data to be serialized into printable
formats such as PDF and PostScript.

Again, we have kept the stylesheet as simple as possible, as shown in Listing 5.4.

Listing 5.4 The Stylesheet for Formatting RSS into XSL:FO

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">
<xsl:template match="*|/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()|@*"><xsl:value-of select="."/></xsl:template>

<xsl:template match="rss">
 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="page"
 page-height="29.7cm"
 page-width="21cm"
 margin-top="1cm"
 margin-bottom="2cm"
 margin-left="2.5cm"
 margin-right="2.5cm">
 <fo:region-before extent="3cm"/>
 <fo:region-body margin-top="3cm"/>
 <fo:region-after extent="1.5cm"/>
 </fo:simple-page-master>

 141

 <fo:page-sequence-master master-name="all">
 <fo:repeatable-page-master-alternatives>
 <fo:conditional-page-master-reference master-name="page"

page-position="first"/>
 </fo:repeatable-page-master-alternatives>
 </fo:page-sequence-master>
 </fo:layout-master-set>

 <fo:page-sequence master-name="all">
 <fo:static-content flow-name="xsl-region-after">
 <fo:block text-align="center"
 font-size="10pt"
 font-family="serif"
 line-height="14pt">page <fo:page-number/></fo:block>
 </fo:static-content>

 <fo:flow flow-name="xsl-region-body">
 <fo:block font-size="24pt" line-height="36pt"

space-before.optimum="24pt"
text-align="center"><xsl:value-of select="channel/title"/></fo:block>
 <xsl:for-each select="channel/item">
 <fo:block font-size="10pt" line-height="14pt">
 <fo:inline font-variant="small-caps"

font-weight="bold"><xsl:value-of
select="title"/></fo:inline>:<xsl:value-of select="description"/>
 </fo:block>
 <fo:block><fo:leader leader-length="100%" leader-pattern="rule"
rule-style="solid"
 rule-thickness="1px" color="black"/>
 </fo:block>
 </xsl:for-each>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
</xsl:template>
</xsl:stylesheet>

This stylesheet formats the XML data into a page layout that consists of the channel title
and a block of information for each item. The title of each item is formatted as bold small
capitals, and a horizontal rule is used to separate each piece of information.

Now that the layout and data are defined, you can build the pipelines in Cocoon that will
fetch the news and format the data into the appropriate styles.

The Application Architecture

You might have noticed that so far we have not used any Cocoon specifics when looking
at the data format your news provider sends and when dealing with the layout of your
data. This shows how these individual parts of designing an application can be separated
from each other.

 142

We will now define the pipeline you need to access the sample news you use in this
chapter. Remember that you are receiving RSS-formatted data from your provider. This
means that the pipeline you need to access linuxtoday.com will work in the same way if
you choose to access a different news site that provides an RSS feed.

The pipeline you need is really quite simple. You require a component that can access the
news source over the Internet using HTTP and a component that formats the XML data
into the output formats you defined with the stylesheets.

Listing 5.5 shows the pipeline.

Listing 5.5 The Pipeline for Accessing linuxtoday.com

<map:pipeline>
<map:match pattern="linuxtoday_*">
 <map:generate

src="http://linuxtoday.com/backend/biglt.rss"/>
 <map:transform src="portal/styles/rss091_{1}.xsl"/>
 <map:select type="parameter">
 <map:parameter name="parameter-selector-test"

value="{1}"/>
 <map:when test="html">
 <map:serialize type="html"/>
 </map:when>
 <map:when test="wml">
 <map:serialize type="wap"/>
 </map:when>
 <map:when test="pdf">
 <map:serialize type="fo2pdf"/>
 </map:when>
 <map:otherwise>
 <map:serialize type="xml"/>
 </map:otherwise>
 </map:select>
</map:match>
</map:pipeline>

Most of the pipeline should be familiar, but we will go through it step by step so that it is
clear what you are doing. The first thing you should note is that we have chosen not to
use the browser selector we talked about in the preceding chapter. The browser selector is
a component that allows the automatic selection of, say, a stylesheet, depending on the
user agent the browser sends to the server.

The problem with using the browser selector is that in order to see any data formatted in
WML, you need a device or program that sends the correct user agent. In this first version
of the portal, you will use a different means of selecting the different formats so that you
are not limited to using a mobile phone to see WML. You will change back to the
browser selector when you extend the portal.

In this version of the portal, you will use a key, encoded in the URI, to select the style
you want to use. When you use a browser to request the information, you must append

 143

the style (html, wml, or pdf). After the data has been fetched from the linuxtoday.com
web site (remember that this is the same regardless of the format), the passed style is used
to select the stylesheet.

Also, because the serialization step is different depending on the style you want to
present, you use the parameter selector to select the correct serializer.

Putting It All Together

Now that you have all the different parts, all that is left to do is put them together.

The first step is to create a directory named portal directly below the cocoon directory.
Then create a directory named styles below portal.This directory is where you will store
the stylesheets. Either save them into this directory or copy them from the CD. Make sure
they are named rss091_html.xsl, rss091_wml.xsl, and rss091_pdf.xsl, respectively.

Then open the sitemap and add the pipeline, as you have done in the other examples. The
next step is to start Cocoon if it is not already running. You do this by starting the servlet
engine.

Use a browser to access the news, adding the style you would like to receive to the URL
when you type it in. For example, to see the news in HTML, use the URI
linuxtoday_html. For WML, use linuxtoday_wml. If you want to view the WML
format, make sure you use a browser that can display this format (such as Opera). To
view the PDF version, you need to have the Adobe PDF viewer installed.

After you have made sure that the basics work correctly for one news feed, you can
extend the portal to offer news from other sources in the same way.

Adding News Sources

As we have mentioned, adding news sources is easy, especially when the data returned is
also in RSS format. It becomes even easier if you choose a news provider that offers a
large selection of different news feeds in the same format. The news provider Moreover
(www.moreover.com) offers more than 3,000 different news feeds and provides them in
several formats, including RSS.

Selecting a news topic from Moreover is quite easy. A typical URI looks like this:

http://p.moreover.com/cgi-local/page?index_health+rss

Let’s now look at the pipeline that you can use to access the Moreover news feeds (see
Listing 5.6).

Listing 5.6 The Pipeline for Accessing moreover.com

http://www.moreover.com/
http://p.moreover.com/cgi-local/page?index_health+rss

 144

<map:match pattern="moreover_*_*">
<map:generate src="http://p.moreover.com/cgi-local/page?index_{1}+rss"/>
 <map:transform src="portal/styles/rss091_{2}.xsl"/>
 <map:select type="parameter">
 <map:parameter name="parameter-selector-test" value="{2}"/>
 <map:when test="html">
 <map:serialize type="html"/>
 </map:when>
 <map:when test="wml">
 <map:serialize type="wap"/>
 </map:when>
 <map:when test="pdf">
 <map:serialize type="fo2pdf"/>
 </map:when>
 <map:otherwise>
 <map:serialize type="xml"/>
 </map:otherwise>
 </map:select>
</map:match>

Looking at the pipeline, you can see that this is a very flexible setup. The first wildcard
allows you to access a specific news feed, and the second wildcard lets you define the
format you want to receive.

Entering the URI http://myserver/cocoon/moreover_health_html into the browser
returns the health news in HTML format. This notation allows you to enter other names
of news feeds directly into the browser without having to reconfigure Cocoon or write
additional pipelines.

Here are the names of some additional feeds you can try:

• entertainmentgossip
• moviereviews
• musicbiz
• banking
• insurance
• onlinebanking

Visit the Moreover web site to find out which news feeds are available.

Add the pipeline to your sitemap below the previous entry for linuxtoday.com. Both
pipelines should be enclosed by the same map:pipeline tag. The complete entry should
look like Listing 5.7.

Listing 5.7 The Complete Sitemap Entry

<map:pipeline>
<map:match pattern="linuxtoday_*">
 <map:generate

src="http://linuxtoday.com/backend/biglt.rss"/>
 <map:transform src="portal/styles/rss091_{1}.xsl"/>

 145

 <map:select type="parameter">
 <map:parameter name="parameter-selector-test" value="{1}"/>
 <map:when test="html">
 <map:serialize type="html"/>
 </map:when>
 <map:when test="wml">
 <map:serialize type="wap"/>
 </map:when>
 <map:when test="pdf">
 <map:serialize type="fo2pdf"/>
 </map:when>
 <map:otherwise>
 <map:serialize type="xml"/>
 </map:otherwise>
 </map:select>
 </map:match>
 <map:match pattern="moreover_*_*">
 <map:generate

src="http://p.moreover.com/cgi-local/page?index_{1}+rss"/>
 <map:transform src="portal/styles/rss091_{2}.xsl"/>
 <map:select type="parameter">
 <map:parameter name="parameter-selector-test" value="{2}"/>
 <map:when test="html">
 <map:serialize type="html"/>
 </map:when>
 <map:when test="wml">
 <map:serialize type="wap"/>
 </map:when>
 <map:when test="pdf">
 <map:serialize type="fo2pdf"/>
 </map:when>
 <map:otherwise>
 <map:serialize type="xml"/>
 </map:otherwise>
 </map:select>
 </map:match>
</map:pipeline>

Now that you have additional news feeds, your portal is nearly complete. At the moment,
however, the user needs to know which link to enter into his browser in order to see a
particular news feed. Let’s make this easier by adding an index page.

An Index Page

The last step in building this version is to add a simple index page that allows a user to
select a particular news feed and format from a complete list you provide. You first need
to define a format for your index page and its entries, as shown in Listing 5.8.

Listing 5.8 The XML Format for the Index Page

<?xml version="1.0" encoding="ISO-8859-1" ?>
<index>
 <title>Cocoon News Portal</title>
 <subtitle>Entry Version</subtitle>

 146

 <entries>
 <entry>
 <name>LinuxToday</name>
 <htmllink>linuxtoday_html</htmllink>
 <wmllink>linuxtoday_wml</wmllink>
 <pdflink>linuxtoday_pdf</pdflink>
 </entry>
 <entry>
 <name>Moreover - Health</name>
 <htmllink>moreover_health_html</htmllink>
 <wmllink>moreover_health_wml</wmllink>
 <pdflink>moreover_health_pdf</pdflink>
 </entry>
 </entries>
</index>

This simple format allows additional feeds to be added easily by appending an <entry>
for each news topic presented on the portal. In addition, the portal’s title and subtitle are
also defined in the XML format.

XML gurus might complain that having a separate tag for each format is not really
necessary, but doing it this way makes it clearer—especially for those just starting out
with XML and Cocoon.

To integrate the index into Cocoon, you need to create a directory named resources
directly below the portal directory you created earlier. Save Listing 5.8 into a file named
index.xml.

Listing 5.9 shows a stylesheet that formats the index file into an HTML table.

Listing 5.9 The Stylesheet to Format the Index File

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*|/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()|@*"><xsl:value-of select="."/></xsl:template>

<xsl:template match="index">
 <html>
 <body>
 <center>
 <h1><xsl:value-of select="title"/></h1>
 <h2><xsl:value-of select="subtitle"/></h2>
 <hr/>
 <table>
 <xsl:apply-templates select="entries/entry"/>
 </table>
 </center>
 </body>
 </html>
</xsl:template>

 147

<xsl:template match="entry">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td>html</td>
 <td>wml</td>
 <td>pdf</td>
</tr>
</xsl:template>
</xsl:stylesheet>

The stylesheet adds a new row to the table for each entry contained in the XML file.
Therefore, there is no need to change the stylesheet if you add news feeds.

The only remaining point is the pipeline you need to add to the sitemap for the index
page (see Listing 5.10).

Listing 5.10 The Pipeline for the Index Page

<map:match pattern="newsportal">
 <map:generate src="portal/resources/index.xml"/>
 <map:transform src="portal/styles/index.xsl"/>
 <map:serialize type="html"/>
</map:match>

Add this pipeline to the sitemap as before. Make sure it is enclosed in the map:pipeline
tag. Start Cocoon (if it is not already running) and access the news portal URI. This
should bring up the index page containing links to the two news feeds.

The Complete Entry Version

That completes the entry version of our news portal. Things might seem pretty simple so
far. Even so, it pays to take a step back from what we have been doing and see how we
arrived at the first portal.

Using only a few lines of sitemap configuration and a small number of stylesheets, you
have built a fully functional news site. This site can access an extensible list of news
feeds over the Internet and then put them in formats suitable for viewing in a browser or
on a mobile phone or for printing as PDF. A user can select the news feed and the format
from a complete list of all the feeds.

Now that we have reached this point, feel free to adapt the stylesheets to your own tastes
or to add news feeds. When you extend the portal in Chapter 7, “Cocoon News Portal:
Extended Version,” you will add database support and user management. We will also
show how it is possible to combine several different feeds into one document. First,
though, we will look at what Cocoon provides in the way of components and concepts
that can help you do this.

 148

Chapter 6. A User’s Look at the Cocoon Architecture

In Chapter 4, “Putting Cocoon to Work,” you saw a simplified view of the Cocoon
architecture. You built a first version of a news portal in Chapter 5, “Cocoon News Portal:
Entry Version.” Now that we have gone over the basics, it is time to fill in the missing
pieces from a user perspective. This chapter presents additional Cocoon components and
concepts you can use to build more advanced applications than the ones you have seen so
far.

We will start by describing the architecture and further features of the sitemap in detail. A
Cocoon-based application can become quite large. The sitemap becomes more
complicated to manage as you add new pipelines. We will show you how to organize an
application’s structure so that it is easier to maintain. New components allow you to
connect your Cocoon-based application to a database and diagnose what might be going
wrong if something does not work as planned. We will also explain how Cocoon can be
used without running it in a servlet engine and give some practical tips on how to tune an
installation for maximum performance.

The Cocoon Architecture in Detail

Before we begin, let’s look at a figure that gives an overview of the Cocoon architecture.
It might help you to refer to Figure 6.1 when reading about the individual building blocks
that make up Cocoon in the following sections. This figure is actually a simplified view
of the architecture, because the dependencies of the components contained in Cocoon are
more complicated than this figure shows. We will get into more detail as we progress
through this book. Imagine that each chapter is a layer of Cocoon that you are slowly
peeling away to see more and more of what is inside.

Figure 6.1. The big picture of Cocoon.

 149

Cocoon is made up of several blocks of functionality. Starting at the top of Figure 6.1,
you see Cocoon integrated into a servlet engine. This can be a standalone servlet engine,
such as Apache Tomcat, or part of an application server, such as IBM WebSphere.

The Cocoon framework forms the envelope around the component-based architecture,
including the different Cocoon components, such as generators and transformers, that can
be used to build document pipelines, the XML and XSLT components, and any custom
components built for a specific application.

As you can seen from the figure, each block in the Cocoon architecture has its own
configuration file. Until now, we have only talked about the central Cocoon configuration
file—the sitemap. The additional configuration files we will look at in this chapter are
also important, because they allow you to define and configure various aspects of a
Cocoon-based application, such as how a running Cocoon should react to changes in the
sitemap or whether Cocoon should cache pipelines. In general, you will need to alter
something in these configuration files only when development of the application is
finished and you are ready to put it into a production environment.

Cocoon is a component-based system. As such, it uses parts of Avalon, a major Apache
project for component-based Java architectures. Apart from Avalon component
management, Cocoon also integrates the Avalon logging architecture, as shown at the
bottom of Figure 6.1.

Avalon Integrated into Cocoon

In addition to including actual software components that can be used in an application,
Avalon provides a set of rules and Java interfaces that are used in Cocoon to configure
components. For example, Avalon allows components to be reused via a pooling
mechanism. Therefore, Avalon provides components to manage these pools and also

 150

defines how a component should be written so that it can be pooled. Cocoon components
then implement these interfaces.

The Avalon project is divided into several subprojects. However, not all the subprojects
are used in Cocoon. The following is a list of subprojects that are used:

• The Avalon LogKit. A Java-based logging API. This logging functionality is
used throughout all the Avalon-based projects and inside Cocoon. The logging
configuration is very flexible, as you will see.

• The Avalon Framework. The base of Avalon. It defines several concepts and
interfaces for component development in Java. It defines the basics of defining,
configuring, and managing software components and how to use them.

• The Avalon Excalibur project. Layered on top of the Avalon Framework. It
implements common reusable components and offers some component
management facilities to fine-tune your installation.

This chapter looks at the possibilities Avalon provides in the context of how they are
actually used inside Cocoon. For example, when we talk about logging, we give tips on
how to optimize the performance of a Cocoon application. Also, for a more detailed
overview of Avalon, see Chapter 8, “A Developer’s Look at the Cocoon Architecture.”

First, however, we’ll start our configuration tour of Cocoon with the configuration file
read by the servlet engine when Cocoon is started.

The Web Application Configuration

When Cocoon runs as a servlet, the servlet engine processes a configuration file during
the startup phase. The servlet engine reads the web application deployment descriptor
(which is located at WEB-INF/web.xml in your Cocoon context directory) and uses the
parameters in this file to perform the initial configuration of Cocoon.

The web.xml file contains the startup configuration that is required to get the system
running. The most important piece of information is the location of the configuration file
for the Avalon-based Cocoon components. In Listing 6.1, which is a snippet from a
web.xml file, the name and location of the configuration file are entered as parameters
inside the init-param tag.

Listing 6.1 The Avalon Configuration Location in web.xml

<!--
 This parameter points to the main configuration file for Cocoon.
 Note that the path is specified in absolute notation but it will be
 resolved relative to the servlets webapp context path
-->
<init-param>
 <param-name>configurations</param-name>
 <param-value>/cocoon.xconf</param-value>
</init-param>

 151

In a default installation of Cocoon, this file is called cocoon.xconf and is located in the
Cocoon context directory. You have probably already seen it when looking for the
sitemap, which is also located there by default. The cocoon.xconf file is an XML file that
contains a description of the used Avalon components for Cocoon and their configuration.
Configuring the name and location of this file inside web.xml allows you to choose your
own name and location for the file if you wish. However, we recommend that you leave
the defaults as is. From now on we will refer to this file simply as cocoon.xconf,
regardless of where you place it and what name you choose.

Although the sitemap components, such as transformers and generators, are also
Avalon-based components, they are not listed inside cocoon.xconf. They are listed inside
the sitemap, as you saw in Chapter 4. This means that a site administrator building a
Cocoon-based application does not need to know about cocoon.xconf. When designing
an application, it is easier to reference only one file instead of having to view several files
at once. cocoon.xconf will become important when you want to fine-tune the installation
or replace any of the default components, such as the XML parser.

Configuring Components in cocoon.xconf

One of Cocoon’s advantages is that it forms a flexible framework around other
components that come from different projects, such as those hosted by Apache. For
example, instead of being able to use only a specific XML parser, Cocoon allows you to
choose which actual implementation you might want to use by allowing these
components to be configured via cocoon.xconf. In addition, cocoon.xconf can be used to
pass parameters to the components so that different aspects can be configured. Listing 6.2
is a brief excerpt from cocoon.xconf that shows the basics of this configuration.

Listing 6.2 An Excerpt from cocoon.xconf

<?xml version="1.0"?>
<cocoon version="2.0">

 <parser class="org.apache.cocoon.components.parser.XercesParser"/>
 <hsqldb-server class="org.apache.cocoon.components.hsqldb.ServerImpl"
 pool-max="1" pool-min="1">
 <parameter name="port" value="9002"/>
 <parameter name="silent" value="true"/>
 <parameter name="trace" value="false"/>
 </hsqldb-server>
 ...
</cocoon>

Unlike the sitemap, cocoon.xconf does not use a namespace. Each component you want
to configure is defined inside the root element called cocoon using its own specific
element. Listing 6.2 has two configured components: parser and hsqldb-server. These
are the logical names under which Cocoon looks for a concrete implementation. The
actual Java class that then implements the expected functionality is configured via the
class attribute. As you can see from Listing 6.2, the default parser is the Xerces Parser
from Apache. Apart from allowing different implementations to be used, cocoon.xconf

 152

allows the components to be configured using individual parameter tags. Each
parameter tag consists of a name and value attribute. This lets you pass information
such as the port number to the configured database. HSQLDB is an open-source database
that is included in the Cocoon distribution. It is used in the practical database examples
later in this chapter. We will also discuss the attributes pool-max and pool-min when we
look at ways to optimize Cocoon’s performance.

If you change something inside cocoon.xconf, these changes are not reflected
automatically. To apply the changes, you have to reinstantiate Cocoon. One way of doing
this is by restarting your servlet engine. However, this is not always an ideal solution,
because you will affect other servlets also currently running in the same servlet engine. It
might also take some time for the engine to restart.

Fortunately, Cocoon provides another way to force the reload of cocoon.xconf. You can
directly request the root node where Cocoon is mounted (such as
http://localhost:8080/cocoon) and then add the request parameter cocoon-reload
with the value true. The whole URL looks like this:

http://localhost:8080/cocoon?cocoon-reload=true

This restarts Cocoon with the changed cocoon.xconf.

Because restarting can be a time-consuming process, you should avoid it in a production
environment. You can turn off this feature by setting the parameter allow-reload in the
web application deployment descriptor (web.xml) to no. The default for this setting is
yes, as shown in Listing 6.3.

Listing 6.3 Allowing Cocoon Reloading in web.xml

<!--
 Allow reinstantiating (reloading) of the cocoon instance. If this is
 set to "yes" or "true", a new cocoon instance can be created using
 the request parameter "cocoon-reload"
.-->
<init-param>
 <param-name>allow-reload</param-name>
 <param-value>yes</param-value>
</init-param>

Remember, this parameter is not in cocoon.xconf. It is in the web.xml file used to control
certain settings for a servlet. This parameter should be set to no in a production
environment, because the default allows anyone to start the reloading of your Cocoon
installation by accessing the URL just listed. If someone were to abuse this, Cocoon
would spend all its time reloading the configuration files, which would prevent any other
activity.

 153

In addition to component configuration, another important piece of information contained
in cocoon.xconf is the location of the sitemap. The last line of cocoon.xconf looks like
this:

<sitemap file="sitemap.xmap" reload-method="asynchron"

check-reload="yes"/>

This definition tells Cocoon where to look for the main sitemap and how to handle its
reloading. Although you can change the file attribute by entering a different location
and name, we have never needed to change this setting. So we recommend that you do
not change it either.

Sitemap Reloading

As you might have noticed during your first steps with Cocoon, changes made to the
sitemap are automatically reflected after some time without a restart of your servlet
engine being necessary.

When configured appropriately, Cocoon occasionally checks the sitemap for changes.
Each time a change is detected, the old sitemap is discarded and the new one is used.
Cocoon detects this change using the last modification date, which is automatically set by
the operating system for a file when it is saved. So even if you do not change the sitemap
but save it unchanged, Cocoon assumes that it has changed and reloads it.

As explained in Chapter 4, a servlet can act only on an incoming request. So Cocoon can
check for changes only when a request for a document is received. The automatic
reloading can be done in a synchronous or asynchronous manner. You can set this
reload method by specifying either synchron or asynchron in the attribute
reload-method in cocoon.xconf for the sitemap location. The default is asynchron.
(Note that this is the correct way to write these parameters—without ous on the end.)

In synchronous mode, the new sitemap is generated in memory from the configuration
file. After this process is finished, it is used and the request is served with this new
sitemap.

In asynchronous mode, the new sitemap is generated in the background, and the
incoming request is served by the old sitemap. All further requests are then processed by
the old sitemap until the generation is finished. From that time on, all documents are
generated using the new sitemap.

Synchronous mode is very useful when you develop your application, because each
change to the sitemap is reflected immediately. Asynchronous mode is more useful for a
production environment in which the sitemap changes very rarely.

Although the automatic reloading of the sitemap seems to be a very useful feature, it has
potential dangers. Assume that you change the sitemap to an invalid state, either by

 154

creating invalid XML or by making some other mistake that prevents Cocoon from being
able to create the sitemap. The next request enters Cocoon, and the sitemap generation
process is triggered.

In synchronous mode, the sitemap is generated immediately, but it fails due to the error
you made beforehand. So you get a Cocoon error page, because Cocoon cannot process
your request. The whole Cocoon installation is “dead” until you correct the error.

In asynchronous mode, the situation is even worse. When the request comes in, the
sitemap generation process is started in the background. The current request and all
further requests are processed by the old sitemap. The generation of the new sitemap fails
because of the error. All further requests are then served using the old sitemap. If the
changes made to the sitemap were only slight, it might take a while before anyone
realizes that the old sitemap is still being used.

Cocoon provides a parameter that allows you to control whether the sitemap should be
checked and reloaded. You can prevent Cocoon from reloading the sitemap by setting the
attribute check-reload in cocoon.xconf to false. If you use the default, the sitemap is
checked for reloading.

But what if you really changed the sitemap and you made a mistake? The first thing to do
is check if your sitemap still contains well-formed XML, so load it into your favorite
XML editor and check this. If it is well-formed but still does not work, you should use
the logging facilities in Cocoon to find any error you perhaps made.

LogKit Configuration

Cocoon is based on the Avalon logging facilities, which are very flexible and powerful.
You can configure details about what should be logged and what should be done with the
log messages.

Cocoon has five log levels:

• DEBUG
• INFO
• WARNING
• ERROR
• FATAL_ERROR

Each component sends out log messages at one of these five levels. The LogKit then
decides what should be done with this message.

Using the configuration, you can decide that only certain levels should really be logged to
a file. For production sites, you will usually want to log only messages with a level of
ERROR or FATAL_ERROR. In contrast, when developing your application, you will always
want to see all levels. Because of the ordering of the different levels, each level contains

 155

all the following levels. Therefore, setting the level to DEBUG results in all messages being
logged. Setting the level to WARNING results in all messages with a level of WARNING,
ERROR, or FATAL_ERROR being logged.

The first thing you have to configure, however, is where Cocoon can find the LogKit
configuration. This is done by another parameter in the web application deployment
descriptor (web.xml), as shown in Listing 6.4.

Listing 6.4 The Location of the LogKit Configuration in the Web Application Deployment
Descriptor

<!--
 This parameter indicates the configuration file of the LogKit management
-->
<init-param>
 <param-name>logkit-config</param-name>
 <param-value>/WEB-INF/logkit.xconf</param-value>
</init-param>

The standard place for the LogKit configuration is WEB-INF/logkit.xconf inside your
Cocoon context directory. This configuration file is an XML document that describes the
LogKit configuration. Listing 6.5 is a simple example.

Listing 6.5 An Excerpt from the LogKit Configuration

<logkit>
 <factories>
 <factory type="priority-filter"
class="org.apache.avalon.excalibur.logger.factory.PriorityFilterTargetF

actory"/>
 <factory type="servlet"
class="org.apache.avalon.excalibur.logger.factory.ServletTargetFactory"

/>
 <factory type="cocoon"

class="org.apache.cocoon.util.log.CocoonTargetFactory"/>
 </factories>

 <targets>
 <cocoon id="cocoon">
 <filename>${context-root}/WEB-INF/logs/cocoon.log</filename>
 <format type="cocoon">
 %7.7{priority} %{time} [%8.8{category}]

(%{uri})%{thread}/%{class:short}:
%{message}\n%{throwable}
 </format>
 <append>true</append>
 <rotation type="revolving" init="1" max="4">
 <or>
 <size>100m</size>
 <time>01:00:00</time>
 </or>
 </rotation>
 </cocoon>

 156

 <priority-filter id="filter" log-level="ERROR">
 <servlet>
 <format type="extended">%7.7{priority} %5.5{time}:

%{message}\n%{throwable}</
format>
 </servlet>
 </priority-filter>
 </targets>

 <categories>
 <category name="cocoon" log-level="DEBUG">
 <log-target id-ref="cocoon"/>
 <log-target id-ref="filter"/>
 </category>
 </categories>
</logkit>

The first part of the configuration file deals with factories for the logging targets.
Factories are used inside component-based architectures to allow the flexible creation of
components. They remove the need to “hard-wire” specific implementations into the
system. You can compare this part of the configuration file with the components section
of the sitemap, where you define the available generators, transformers, and so on.

These factories define components that are to receive the log events. In this example, the
cocoon factory writes log events to a file. The servlet factory logs into the servlet log,
and the priority-filter filters events.

These factories are then used in the targets section to instantiate real targets. When the
cocoon target is instantiated, it receives the location of the log file (the filename tag)
and in what format (the format tag) the log messages should be written.

The third part of the configuration is the categories section. Each component inside
Cocoon can log into different categories. Usually they all log into the root category,
which is also called cocoon.

So the LogKit configuration defines this category. A category gets a log level and a set of
targets. All log events with this log level (or above) are sent to all the targets. So, in this
example, all log events with DEBUG or higher are sent to a target called cocoon (logging
into a file) and a target called filter.

This “filter” uses the priority filter to filter the log events. In this configuration, the filter
discards all messages that do not have the level ERROR or FATAL_ERROR. Messages with
one of these two levels are sent to the servlet target. So they are logged into the servlet
log as well.

As you can see from this example, even a simple LogKit configuration can get very
complex (and therefore complicated). But in most cases, it is sufficient to change the used
log level. You can do this simply by changing the log-level attribute of the cocoon

 157

category. When you use a file-based configuration like this, you also can add new targets
and categories without changing the code.

In case of a problem, you should have a look at the log file and see if you can find any
description of the problem in the file. If the log level is not DEBUG, you should switch it.
But be careful: A change to the log level (or any other change in the LogKit configuration)
is not reflected immediately. You need to reinstantiate Cocoon in order for this to happen.
You can force this by specifying the parameter cocoon-reload or by changing
cocoon.xconf.

Changing the level to DEBUG causes the log file to become very large. Logging is also
quite a time-consuming process, so you will want to set the level as low as possible (such
as to ERROR) in a production environment.

How Requests Are Processed Inside Cocoon

Whenever a request for a document is sent to Cocoon, the root sitemap is taken to
respond to the request. The pipelines section of the root sitemap is then processed
top-down. All map:pipeline sections marked as internal-only using the attribute
internal-only are skipped. The process follows the steps described next. For the
moment, we will neglect the views (they are explained in a separate section), because
they would only confuse this description:

• If a match directive is found, the matcher tests a value against a given pattern. If
the value matches, the directives inside the matcher are executed next, and
possible values from the matcher can be used by specific keys. If the value does
not match, the next directive on the same level is executed next.

• If an action directive is found, the action is executed immediately. If the action
returns keys for value substitution, the directives inside the action are executed
next. If no keys are provided, the directive on the same level is next.

• If a selector directive is found, the selector performs the various test cases from
top to bottom. When the value is equivalent to the first test case, the directives
inside this case are executed next, and all others are ignored. If no test case
matches, the default case (if it’s available) defines the next directives to execute.

• If a generator directive is found, it builds the starting point for the XML
processing pipeline. The next directive on the same level is executed. The
generator is not yet started.

• If a transformer directive is found, the transformer is added at the end of the XML
processing pipeline, but it is not executed yet. Then the next directive on the same
level is executed.

• If a serializer directive is found, the serializer builds the end of the XML
processing pipeline, and the buildup pipeline is executed. The generator feeds its
XML through the various transformers. The serializer produces the document, and
the processing is finished.

• If a reader directive is found, the reader delivers the document, and the processing
is finished.

 158

• If a redirect occurs, the processing is stopped. If the redirect points to a sitemap
resource, it is processed. If the redirect is an external link, the client is redirected
to it. If the link is internal, a new request is processed by Cocoon, starting at the
main sitemap.

• If a mount for a subsitemap is found, the processing is passed on to the
subsitemap. When the subsitemap processing is finished, the document is
processed.

• If a content aggregation directive is found, this special generator is added as the
starting point of the XML processing pipeline.

• If an error occurs, the error handler of the current map:pipeline is called.

As you can see from this flow description, actions, matchers, and selectors are executed
immediately when the sitemap is processed. The same applies for a reader.

But generators, transformers, and serializers are not executed immediately. They are
chained to build the processing pipeline. Only when this pipeline is complete (when a
serializer is added) is the whole pipeline executed.

Because the XML is processed in this created pipeline, all other sitemap components not
chained in this pipeline have no access to the XML. Thus, an action, matcher, or selector
cannot be influenced by this XML, nor can they influence it.

Cocoon distinguishes between two pipeline types: the event pipeline and the stream
pipeline. As the name implies, the event pipeline deals with SAX events. It consists of the
usual XML processing pipeline (generator and transformers) without the serializer. A
stream pipeline streams the final document to the client. It consists of only a reader or of
an event pipeline in combination with a serializer.

For a Cocoon user, this information is important to know in order to understand caching
(which we will explain later) and the cocoon protocol.

The cocoon protocol invokes an internal request to the sitemap. The resulting document
can be used, for example, as the input for a generator or transformer or for content
aggregation. All these components require XML. The generator reads produced XML,
the xslt transformer uses stylesheets, and the content aggregation aggregates XML
documents and generates from these documents one XML document.

But the cocoon protocol calls an arbitrary pipeline, which has a serializer at the end. It
could, in the best case, return XML as a stream of characters or, even worse, HTML or
any other format. How does this work? As you might guess, the answer is the event
pipeline.

Whenever the cocoon protocol is used, only the event pipeline is built. Remember, the
event pipeline is the XML processing pipeline without the serializer. So the event
pipeline directly outputs XML as SAX events. Therefore, all components requiring XML

 159

can very easily use the cocoon protocol. Obviously, the cocoon protocol must not point
to a pipeline using a reader.

Now let’s get on with explaining these mysterious SAX events in detail.

SAX Event Handling

XML pipelines also work internally with the SAX model. Therefore, a generator sends
SAX events to the following component in the pipeline. This component sends SAX
events to the next one, and so on until the final serializer gets the final SAX events,
serializes them, and creates the output document.

It might seem unimportant to a Cocoon user that the SAX model is used, but it has an
impact on how pipelines must be built. SAX events have only one direction: from top to
bottom, if you think about how they are written in the sitemap. It is not possible to send
SAX events back up the pipeline.

A transformer transforms the incoming XML stream. There are two possible categories
of transformers. In the first one, a transformer transforms the document as a whole, like
the xslt transformer does. The stylesheet for the xslt transformer contains all the
information for each node in the XML document.

The other category is a transformer that listens for specific XML elements that it will
transform. For example, the sql transformer waits for special elements that set the SQL
connection and the SQL query. All other elements surrounding the SQL statements are
ignored. By ignored, we mean that they are passed unchanged from the sql transformer to
the next component in the pipeline, as shown in Figure 6.2.

Figure 6.2. SAX event handling.

In order to get the sql transformer working, the incoming SAX events of the previous
component in the pipeline (perhaps the generator) must contain those special elements for

 160

the sql transformer. So this is the first simple rule: If a component is listening for specific
information, that information must be provided by a previous component in the pipeline.

There are more transformers that act like the sql transformer. The ldap transformer is
another example of a transformer that reacts to special tags. It listens for some elements
and then queries an LDAP system. If you want to build complex pipelines that have more
than one transformer of this category, you have to think carefully about what you really
want to do.

Imagine that you want to read an XML document from the local hard drive. This XML
document contains information for the sql transformer. The sql transformer fetches data
from the database that is then feed into the ldap transformer.

From these requirements, you should be able to build up your XML document. It should
look like Listing 6.6.

Listing 6.6 An Example of Dependent Components

<?xml version="1.0"?>
<document>
 <LDAP>
 <LDAP-INFORMATION>
 <SQL>
 <SQL-INFORMATION/>
 </SQL>
 </LDAP-INFORMATION>
 </LDAP>
</document>

The information for the sql transformer is surrounded by the elements for the ldap
transformer. Because the fetched data is the input for the LDAP query, it must be
contained inside the LDAP elements.

In order to make the example work, you have to define your pipeline according to your
XML document. As the ldap transformer waits for information from the sql transformer,
the pipeline should look like Listing 6.7.

Listing 6.7 A Pipeline of Dependent Components

<map:generate src="document.xml"/>
<map:transform type="sql"/>
<map:transform type="ldap"/>
<map:serialize/>

The sql transformer needs to come before the ldap transformer. Why is this so? The
answer lies in the SAX events. As mentioned, SAX events are sent in only one direction.
The ldap transformer needs information from the sql transformer, so the SQL query must
be done first.

 161

If you put the sql transformer after the ldap transformer, the statements and elements for
the sql transformer would be directly used as the information for the ldap transformer.
This LDAP query would then fail, and the sql transformer would never get its
information.

So the second important rule is this: When building pipelines, you need to be aware of
the events or data flow. In other words, you need to know the dependencies between your
transformation steps. For example, if transformer A needs information from transformer
B, you have to put transformer B before transformer A in the pipeline, and the elements
for transformer B must be nested inside those for transformer A.

Of course, you need not stick to this simple rule. In some cases, the information delivered
from one transformer cannot be used directly by another transformer. Then you should
use intermediate stylesheet transformation, which converts the data of the first
transformer to usable input for the second transformer.

In the preceding example, the order of the components in the pipeline would still be the
same, but you could then add a stylesheet transformation between the sql transformer and
the ldap transformer stage. This stylesheet would convert the response from the sql
transformer into a suitable request for the ldap transformer.

Using an intermediate stylesheet is very important if you have circular dependencies.
Imagine a pipeline in which you first have a SQL query, and then a dependent LDAP
query, and after that a second SQL query that needs information from the LDAP
transformation.

The simple approach shown in Figure 6.3 will not work. If you follow the rule we set up,
you would build the structure of the commands as set out in the first block at the
beginning of the chain in the figure—first the outer tags for the last sql transformer, and
then the tags for the ldap transformer, and inside them the tags for the first sql
transformer. However, because a sql transformer is in front of the ldap transformer, the
last sql transformer never receives any of its commands, because the first sql transformer
will have already processed them. There is no way to tell each sql transformer which
SQL tags are for the first transformer and which are for the second.

Figure 6.3. Incorrect chaining of dependent transformers.

 162

The only solution that works in a case like this is to use an intermediate stylesheet, as
shown in Figure 6.4.

Figure 6.4. Using an intermediate stylesheet.

The starting document containing the commands must then contain only the LDAP query
with the nested SQL query for the first sql transformer. After the ldap transformer in the
pipeline, you need a stylesheet transformation, which adds the SQL statement for the last
sql transformer around the data fetched from the LDAP query. This can then be
processed by the following sql transformer.

As you can see from the example that uses transformers and intermediate stylesheets,
pipelines can get quite complicated. You need to be aware of how things work in order to
build your pipeline. However, in our experience with Cocoon, we have very rarely had
such complex dependencies. It is more often the case that you need more than two
transformers, but they are not dependent, so you do not need an intermediate stylesheet
transformation.

 163

This section introduced the additional files that control how Cocoon is configured. It also
showed you how components in Cocoon can receive parameters through these
configuration files. Cocoon components are based on design principles set out by the
Apache project Avalon. Cocoon also uses the Avalon logging mechanism. We also
looked at how a request is processed inside Cocoon and how the XML tags are sent
through a pipeline as SAX events. After taking a user’s look at the various configuration
files, we can now return to the sitemap, which is the most important configuration file
from a user perspective. We will look at the features not already explained in Chapter 4.

Advanced Sitemap Features

If you are already somewhat familiar with Cocoon, you will have noticed that we left out
some features when we first introduced it. The main reason for this was to make it easier
for first-time users to get started with Cocoon. Now that we have expanded on the first
block of information with examples and the first version of the news portal application,
we can complete the description of the sitemap features from a user perspective.

One of the most important functions in Cocoon is its ability to obtain data from various
sources. This is done through different protocols. This section introduces some
Cocoon-specific protocols. We will also explain some new sitemap component types and
the views and resources sections of the sitemap. However, before we dive into the details,
let’s begin our look at the sitemap with a slightly different type of component— the
action-set.

Action-Sets

Chapter 4 introduced the component type action, which can be used in any pipeline to
fulfill a defined task. Cocoon also offers a more flexible approach to using actions:
action-sets.

In contrast to other sitemap component types, an action-set is a combination of for-merly
defined actions that can be used in a pipeline as though it were a single component.
Defining an action-set is like defining a pipeline, which is a combination of sitemap
components. An action-set is also defined inside its own sitemap section, the
map:action-sets section.

Each action-set is introduced with the map:action-set element, which receives a unique
name via the attribute name. Inside this element you can enter as many actions as you like,
as shown in Listing 6.8. You arrange a set of actions to form a group.

Listing 6.8 An Example of an Action-Set

<map:action-sets>
 <map:action-set name="myactionset">
 <map:act type="log-start-action"/>
 <map:act type="add-action" action="add"/>
 <map:act type="del-action" action="delete"/>

 164

 <map:act type="log-end-action"/>
 </map:action-set>
</map:action-sets>

A defined action-set can be used in the pipeline just like a normal action via the tag
<map:act set="myactionset"/>. The difference is that the attribute set is used instead
of type.

If you use an action-set, all actions of this set are called in the order they are defined. In
addition, it is possible to selectively call an action inside an action-set. To do this, you
can define each action in the action-set to have an attribute action. If the current request
being processed by the pipeline contains a request parameter called cocoon-action, the
action with the corresponding action attribute in the action-set is called.

In Listing 6.8, if the action-set myactionset is used, log-start-action is invoked. If
the request currently being processed contains a cocoon-action parameter with the
value add, the action add-action is invoked. If instead the cocoon-action parameter
has the value delete, del-action is invoked. Finally, log-end-action is always
invoked. The cocoon-action parameter can contain only one value, so either
add-action or del-action or neither is invoked, but never both at the same time.

Do you remember value substitution, discussed in Chapter 4? An action can provide
key-value pairs for other sitemap components. All components nested inside the action
have access if they know the key’s name.

Value substitution for action-sets is very similar, as shown in Figure 6.5. Whereas all
values of an action are accessible using the key for nested components, all values of all
called actions of the action-set are available inside the action-set element. Therefore, the
value substitution algorithm collects all values from all actions. However, if two actions
use the same key inside an action-set, only the value of the last action is available. It
overrides the previous one.

Figure 6.5. Value substitution for action-sets.

 165

Using action-sets allows you to build modular components that can be used flexibly in
pipelines. Often, actions are used to control the flow inside a pipeline and to determine
such things as which data source needs to be accessed for the current request. Using the
various protocols available in Cocoon allows a variety of different possibilities when it
comes to retrieving data or calling internal functions as part of processing.

Protocols

A concept widely used inside sitemaps is the definition of URIs. On the one hand, you
define the sitemap to spawn a virtual URI space, which is served by Cocoon, but more
obviously, you use URIs to specify which resources are to be read by the various sitemap
components. For example, the file generator needs an XML document as input; the xslt
transformer processes a stylesheet, and so on.

As we discussed in Chapter 4, you can use any protocol supported by Cocoon to define
your URIs and to access resources. For example, you can use an HTTP connection to
retrieve an XML document from a remote server, an FTP connection to read a stylesheet,
or the file protocol to read a file from the local hard drive.

In addition to these standard protocols, Cocoon offers additional protocols that can also
be used inside the source definition of a generator, a transformer, or any other component.
All these protocols follow the general pattern for building URIs:
protocolname ://path to the resource . Cocoon supports a resource protocol,
a context protocol, a cocoon protocol, and a protocol that is used implicitly.

The Implicit Protocol

The most important protocol is the implicit protocol, which you have already used
without noticing. As the name suggests, this protocol is used implicitly whenever a

 166

protocol definition is missing. For example, if you write something like <map:generate
src="mydocument.xml"/>, Cocoon can handle it even though the protocol is missing.

How Cocoon handles this depends on how you deployed the web application. There are
two ways of doing this. You can bundle everything into a web archive (WAR) file, or you
can deploy everything as individual files. If your web application is not a WAR file,
Cocoon implicitly adds the file protocol. All the references are then resolved relative to
the location of the current sitemap using the file protocol. If you have a WAR file,
Cocoon implicitly adds the protocol provided by the servlet engine to access these files,
again relative to the location of the current sitemap.

This means that you don’t need to worry about explicitly using a protocol when you
define your pipelines and the resources they are to access. However, it is always better to
add the protocol explicitly, because this makes your sitemap entries more readable to
someone who is not as familiar with the inner workings of Cocoon.

The Context Protocol

The context protocol is used to access any resource belonging to the Cocoon web
application. If you deployed the Web application from a directory on your hard drive, the
context protocol is directly mapped to the filesystem. So the resource definition
context://mydocument.xml is translated to a file URI pointing to the Cocoon web
application directory—more precisely, to a file called mydocument.xml inside this
directory.

If you have deployed your Cocoon web application as a WAR file, you access the
resources inside the WAR file using the context protocol. The argument following the
protocol is a path relative to the root of the WAR file. So again, context://
mydocument.xml references a file named mydocument.xml stored at the root of the WAR
file.

So, if you use the context protocol, you can abstract from how you deployed your
Cocoon web application. Cocoon can determine whether to use the filesystem or the
WAR file to resolve the resource you might want to load.

Whereas the context protocol can be used to access resources inside a WAR file or in a
filesystem, the resource protocol can locate resources inside Java archives (JAR files).

The Resource Protocol

Because Cocoon is implemented using Java, it consists of several JAR files that contain
the various parts. A JAR file can contain more than Java code. It can hold any resource,
such as images, XML documents, or stylesheets. All these JAR files are located in the
WEB-INF/lib directory of your Cocoon context and are loaded automatically at startup
by your servlet engine.

 167

If you want to read such a resource, you can simply use the resource protocol followed
by a path specifying the resource precisely. Cocoon then searches all loaded JAR files for
this resource. For example, resource://org/apache/cocoon/components/
language/markup/xsp/java/xsp.xsl specifies a file named xsp.xsl. This file is in one
of the JAR files in the directory structure org/apache/cocoon/components/language/
markup/xsp/java. So one JAR file has a root directory called org, which has a
subdirectory named apache, and so on.

So far, we have looked at protocols that allow you to access static resources. But what if
you want to access resources that are not available as a unit but must be built by a
process?

The Cocoon Protocol

Because Cocoon is a processing framework that can build documents using processing
pipelines, sooner or later you might want to use a Cocoon resource as the input for a
generator in another resource. Doing this lets you use the result of a resource as the
starting point for a pipeline or as the input for any other component. So what you need is
a way to access the result of one pipeline from another pipeline.

The cocoon protocol allows you to do exactly this. It accesses pipelines inside the
sitemap. For example, <map:generate src="cocoon:/helloworld"/> uses the file
generator that reads an XML document created by a request for the document
helloworld against the sitemap.

Whenever you use the cocoon protocol, Cocoon internally processes a new request for
the specified document and uses this result for the ongoing processing of the original
request.

The main use of this protocol is content aggregation, in which you can build a document
from more than one source, as you will see in the next section. But you can, of course,
use this protocol everywhere in the sitemap—for example, as an input to the xslt
transformer.

All in all, the different protocols allow a very flexible mechanism for accessing data
sources. You can also add your own new protocol if you like. We will show you how to
do this in Chapter 9, “Developing Components for Cocoon.” As soon as you have set up
pipelines to access the various data sources, content aggregation allows you to combine
them inside the sitemap.

Content Aggregation

When designing web applications, such as a portal, you often need to build complex
documents consisting of several parts. Consider a typical information web site. The
document consists of a header displaying, for example, the name of the company, a

 168

navigation bar, a block of content that was chosen from the navigation bar, and perhaps a
footer displaying some static information.

Although this is a single document, it consists of four parts: header, navigation bar,
content, and footer. Many documents follow this scheme. For each piece of content you
display on your web site, you have exactly one document consisting of three static
parts—header, navigation bar, and footer—and the content. How can documents like this
be created easily?

One solution is to define a separate pipeline for each document. Each pipeline then reads
an XML document containing not only the content but also XML information for the
header, footer, and navigation bar. The XML information is then formatted by a
stylesheet to present the complete page.

The problem with this solution is that you cannot access just the content. You would need
to do this if you wanted to format the data into a PDF document, where you do not need
the additional information on a header or footer.

Even worse, defining separate pipelines mixes concerns. The content should not need to
know about the other parts, and vice versa. So the ideal solution would be to create the
parts as separate documents and then be able to combine them.

That’s where content aggregation comes in handy. You can define a document that is a
combination or aggregation of other documents. To do this, you need to define a pipeline
in the sitemap and use some tags specific to content aggregation, as shown in Listing 6.9.

Listing 6.9 An Example of Content Aggregation

<map:pipeline internal-only="true">
 <map:match pattern="header">
 <map:generate src="header.xml"/>
 <map:serialize type="xml"/>
 </map:match>
 <map:match pattern="footer">
 <map:generate src="footer.xml"/>
 <map:serialize type="xml"/>
 </map:match>
 <map:match pattern="navigation">
 <map:generate src="footer.xml"/>
 <map:serialize type="xml"/>
 </map:match>
 <map:match pattern="*">
 <map:generate src="docs/{1}.xml"/>
 <map:serialize type="xml"/>
 </map:match>
</map:pipeline>
<map:pipeline>
 <map:match pattern="docs/*">
 <map:aggregate element="document">
 <map:part src="cocoon:/header" element="header"/>
 <map:part src="cocoon:/navigation" element="navigation"/>

 169

 <map:part src="cocoon:/{1}" element="content"/>
 <map:part src="cocoon:/footer" element="footer"/>
 </map:aggregate>
 <map:transform src="all2html.xsl"/>
 <map:serialize type="html"/>
 </map:match>
</map:pipeline>

Listing 6.9 has some new elements we need to define before proceeding with our
discussion. The most obvious one is the map:aggregate command. It is used inside an
XML processing pipeline as a replacement for the map:generate instruction you would
have in a normal pipeline. It defines a content aggregation of the parts, which are defined
as nested map:part elements. In our example, we are building a complete document
containing a header, a footer, navigation, and content. The attribute element of
map:aggregate defines the root element of the generated XML document. Each part can
have an element, under which you can find this part in the aggregated content. See
Listing 6.10.

Listing 6.10 Aggregated Content

<?xml version="1.0"?>
<document>
 <header>
 <!-- here is the content of the header document -->
 </header>
 <navigation>
 <!-- here is the content of the navigation document -->
 </navigation>
 <content>
 <!-- here is the content of the content document -->
 </content>
 <footer>
 <!-- here is the content of the footer document -->
 </footer>
</document>

As you can see from Listing 6.10, the content is aggregated by the various parts. The
following components in the pipeline, such as the xslt transformer, can transform this
aggregated document into HTML or whatever format is required.

You do not need to define an element attribute for a part. If it is omitted, the part’s
content is directly included under the document’s root node.

The cocoon protocol is used for each part. Therefore, each part is defined by another
pipeline somewhere in the sitemap. In this example, these pipelines are all inside their
own map:pipeline section in the sitemap.

Normally, because the separate parts are pipelines in the sitemap, you would be able to
access them individually using a browser. This is not what you want, however, because it
would result in your receiving only part of a document.

 170

Because you do not want to be able to receive only the document header or navigation or
footer or the content itself without the surrounding parts, this map:pipeline section is
protected with the attribute internal-only set to true. With this attribute set, all
marked map:pipeline sections are skipped when Cocoon processes a request. These
pipelines can only be invoked “internally” by using the cocoon protocol from within
another pipeline.

You can control content aggregation using three more attributes for an aggregated part:
prefix, ns, and strip-root. So, a full-featured part might look like this:

<map:part src="cocoon:/header" strip-root="true" prefix="header"
ns="header://version/1.0" element="header"/>

The top-level element for the header part is called header. It gets the namespace defined
by the attribute ns. The attribute prefix is used to define the prefix. So the top-level
element looks like this:

<header:header xmlns:header="header://version/1.0"/>

You can leave out the attribute prefix.

In addition, you can use the attribute strip-root with a Boolean value. If it is set to
true, the root element of the aggregated part is stripped off. So if the pipeline for the
document header has the root element myheader, it is not included. All children of the
myheader element are included under the root element of the part.

Although you might get the impression that you must use the cocoon protocol to
aggregate parts, this is not true. You can use any protocol available. The simplest case is
aggregating XML files.

Later you will see practical examples and tips and a real-world example of content
aggregation. This example—the Cocoon online documentation—also uses some other
features not explained yet. One of them is the concept of subsitemaps.

Subsitemaps

When you develop large web applications, or when more than one person is editing the
sitemap, it can be very difficult to maintain, because it is a single big XML document.

To simplify sitemap editing and maintenance, Cocoon offers the concept of subsitemaps
(see Figure 6.6). A subsitemap looks like a normal sitemap, but it is mounted into the
main sitemap. By mounting, we mean that you usually define a URI prefix for a
subsitemap. All incoming requests starting with this prefix are then handled by the
subsitemap.

 171

Figure 6.6. Subsitemaps.

The mount points allow you to cascade your sitemaps. This ensures more readabil-ity and
supports sitemap editors managing the web application. Each subsitemap can then be
maintained by a different person. After mounting, you can imagine the whole
construction as a tree, with the main sitemap being the root.

When a request for a document enters Cocoon, it is always processed by the main
sitemap first. If a mount point for a subsitemap is reached, the processing is passed to the
subsitemap (see Listing 6.11).

Listing 6.11 A Basic Example of Mounting a Subsitemap

<map:match pattern="faq/*">
 <map:mount check-reload="yes" src="faq/sitemap.xmap"

reload-method="synchron"/>
</map:match>

The src attribute defines the location of the subsitemap. If it ends in a slash,
sitemap.xmap is automatically appended to find the sitemap. Otherwise, Cocoon
assumes that the src attribute directly defines a file containing the subsitemap.

Like the root sitemap, subsitemaps can be configured with respect to reloading. The
configuration is similar to that of the root sitemap in cocoon.xconf. The check-reload
attribute, which defaults to true, defines whether changes to the subsitemap should be
reflected.

 172

If this reload checking is activated, reload-method specifies whether the subsitemap
regeneration should be synchronous or asynchronous. Here the same rules apply as those
explained for sitemap reloading at the beginning of this chapter.

The fourth attribute for map:mount is the uri-prefix attribute. As explained, when a
request enters Cocoon, the root sitemap is processed with the incoming URI. Now, if a
mount point for a subsitemap is reached and Cocoon processes this subsitemap, the same
URI is passed in.

For example, if you requested for a document called faq/installation, and the mount
defined in Listing 6.11 is reached, this URI is passed on to the subsitemap unchanged.
Even though you mounted the sitemap under the path faq, you still have to match this
prefix inside the subsitemap. If you want to mount your subsitemap under a different path,
such as old-example, you have to update the root sitemap to add a prefix and also all
matches inside your subsitemap to reflect this new location (see Listing 6.12).

Listing 6.12 Mounting a Subsitemap with Prefix

<map:match pattern="faq/*">
 <map:mount uri-prefix="faq/" check-reload="yes" src="faq/sitemap.xmap"
reload-method="synchron"/>
</map:match>

To avoid these problems and to make the subsitemap more independent from the root
sitemap, you can use the uri-prefix attribute to pass only the important part into the
subsitemap. In the example, you want to pass only installation into the subsitemap.

Because the subsitemap is mounted using the path faq/, you have to remove it from the
URI that is passed to the subsitemap. And that’s exactly what you do with the
uri-prefix attribute. You define a string starting on the left side of the URI. It is
removed from the original when processing is passed to the subsitemap. In the example,
you want to remove faq/ and therefore give this value to the uri-prefix attribute.
Cocoon automatically checks for a trailing slash, so writing either faq or faq/ is
equivalent. However, we suggest that you add the slash to make it easier to read your
entry.

A subsitemap can look the same as the main sitemap. It can have the same sections,
starting with a components section and ending with a pipelines section.

In fact, these two sections are the ones required to make a subsitemap work, as you can
see from Listing 6.13. But you can, of course, have all the other sections as well.

Listing 6.13 An Example Subsitemap

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <map:components>
 <map:generators default="file"/>
 <map:transformers default="xslt"/>

 173

 <map:readers default="resource"/>
 <map:serializers default="html"/>
 <map:selectors default="browser"/>
 <map:matchers default="wildcard"/>
 </map:components>
 <map:pipelines>
 <map:pipeline>
 <map:match pattern="*">
 <map:generate src="{1}.xml"/>
 <map:transform src="faq2html.xsl"/>
 <map:serialize/>
 </map:match>
 </map:pipeline>
 </map:pipelines>

</map:sitemap>

All requests entering the main sitemap that start with the prefix faq/ are passed to the
subsitemap. The prefix is removed from the URI, and the subsitemap receives only the
part of the URI that comes after this prefix.

So a request for faq/installing is passed as a request for installing to the
subsitemap. As defined in the subsitemap in Listing 6.13, the request reads an XML
document named installing.xml, transforms it, and serializes it as HTML.

As you can see from this example, you can use all the sitemap components from the main
sitemap without declaring them again, but in order to make the subsitemap work, you
have to declare the default component for each component type.

However, in order to separate concerns, you can define specific sitemap components in
the components section of your subsitemap. These components are then accessible only
in this subsitemap, not in the parent sitemap. You can also redefine a component
inherited from the parent sitemap but with another configuration. Again, this
configuration is used only in the subsitemap.

Using subsitemaps helps you manage your web site. Each sitemap editor has his own
separate sitemap that cannot interfere with the other sitemaps. Even if a subsitemap stops
working due to a mistake made in the subsitemap, the main sitemap and all other
subsitemaps still work.

The hierarchical structure of sitemaps is not limited to two levels (one main sitemap with
several subsitemaps). Because a subsitemap is a full-featured sitemap that inherits from
the parent (or main) sitemap, it can have its own subsitemaps. So you can build a big tree
of sitemaps using this concept.

Each subsitemap can have its own directory to store resources such as XML documents
and stylesheets. All URIs that do not have an explicit protocol are resolved according to
the sitemap’s directory. In the example, the subsitemap is stored in the directory faq. The

 174

pipeline for a document reads an XML document that is resolved relative to this directory
faq.

Apart from using the concept of subsitemaps to maintain your web site, you can also use
views to organize what you send to the client application.

Views

Chapter 4 glossed over the explanation of the map:views and map:resources sections in
the sitemap. Let’s now fill in this gap, starting with views.

A request you send to Cocoon is mapped to a pipeline in the sitemap. That pipeline uses a
combination of components to generate an end result, a document that is returned to you
as a result of your request. You can think of the end result as being the default view of the
document generated by that particular pipeline. However, Cocoon also lets you configure
and request other views of a particular document.

Cocoon offers a wide variety of configurable views for its documents. You can request a
document’s content view, and you will get the content in that document’s XML format.
Or you can ask for a document’s link view and get all the links to other documents
contained in this document.

The views concept is complex. So we’ll start our discussion of views by looking at some
simple examples and examining some use-cases. The first thing you need to know is how
to specify which view of the document you want when sending the request to Cocoon.
You do so using the request parameter cocoon-view with the value of the view name you
ask for. So if you ask for
http://localhost:8080/cocoon/helloworld?cocoon-view=content, you receive
that document’s content view.

The more complex question is how Cocoon knows what to do when a view is requested.
Generally speaking, a view is an alternative pipeline for a document. It starts like the
original pipeline for the document, but it has a different ending.

Assume that you have a standard pipeline consisting of a file generator, an xslt
transformer, and an html serializer. You can then define a different view using the same
file generator but a different transformer and serializer.

A view definition consists of two parts, as shown in Listing 6.14. The first part specifies
which parts or beginning of the original pipeline should be used for the view. The second
part defines the alternative ending. The ending is defined in the map:views section of the
sitemap.

Listing 6.14 Views

<map:views>
 <map:view name="content" from-label="content">

 175

 <map:serialize type="xml"/>
 </map:view>
 <map:view name="links" from-position="last">
 <map:serialize type="links"/>
 </map:view>
</map:views>

For each possible view, you create a map:view element with the attribute name specifying
the view’s unique name. Inside this element, you define the pipeline’s ending. Because
this is only the ending, you must not define a generator. However, you can use
transformers, and you must provide a serializer.

Listing 6.14 shows two defined views: the content view and the links view. Each new
view contains only a serializer. Looking at the links view, you can see that the attribute
from-position has the value last. This tells Cocoon where the new pipeline should
take over from the original when the links view is requested. In this case, the alternative
ending for this view starts at the last position of the original pipeline.

In other words, the serializer of the original pipeline is ignored, and instead, all sitemap
components enclosed in this view are appended. So the links view differs from the
original document in that it uses the links serializer (see Listing 6.15).

Listing 6.15 The Link Serializer

<map:serializers>
 <map:serializer name="links"

src="org.apache.cocoon.serialization.LinkSerializer"/>
</map:serializers>

The link serializer is a special serializer that outputs plain text. It extracts all links and
references from a document and puts each link in a separate line of the output text. These
links and references are searched for in the original document by searching for the
attributes src and href.

Another possibility is to define the value first for the view’s from-position attribute.
Then the alternative pipeline starts immediately after the original generator.

But Cocoon wouldn’t be Cocoon if these were the only possibilities for defining views!
You can define more fine-grained views by using the attribute from-label on the view.
The value of this attribute marks a label that can be used in the original pipeline for the
sitemap components.

With this label attached to sitemap components such as generators and transformers, you
define which components of the original pipeline should be used for the view. Listing
6.16 shows an example.

Listing 6.16 An Example of Labeled Views

 176

<map:generators default="file">
 <map:generator name="file" label="content"
src="org.apache.cocoon.generation.FileGenerator"/>
 <map:generator name="html"

src="org.apache.cocoon.generation.HTMLGenerator"/>
 ...
</map:generators>
...
<map:pipeline>
 <map:match pattern="document_one">
 <map:generate src="document.xml"/>
 <map:transform src="document2html.xsl"/>
 <map:serialize/>
 </map:match>
 <map:match pattern="document_two">
 <map:generate src="page.html" type="html"/>
 <map:transform label="content" src="restructure.xsl"/>
 <map:transform src="document2html.xsl"/>
 <map:serialize/>
 </map:match>
</map:pipeline>

The component definition of the file generator is labeled with a label called content.
This indicates that whenever a view is requested and this view uses the label content,
the generator is included in the pipeline for this view. Similarly, you can mark other
generators and transformers in the components section as well.

The pipeline for the first document, called document_one (see Figure 6.7), is assembled
by the file generator, an xslt transformer, and the html serializer. When the content view
is requested, Cocoon looks at the map:views section and finds the definition for this view.
This view indicates that the label content is used. During the pipeline assembly, the
components for this pipeline are checked for the label.

Figure 6.7. A simple example of using views.

The file generator is labeled, so it is used. If a component is labeled, it is added to the
pipeline for the view, and the usual pipeline processing is passed to the views section. All

 177

other sitemap components of the original pipeline are ignored, and the components of the
views section are appended.

The pipeline for the second example (document_two), shown in Figure 6.8, is assembled
by the html generator, two xslt transformers, and the html serializer. Note that neither the
html generator nor the xslt transformer is labeled in the components section. When the
content view of this document is requested, the original pipeline is searched for the label.

Figure 6.8. An advanced example of using views.

In general, the xslt transformer is not labeled, so it usually isn’t added to the pipeline for
the view. But for this special pipeline, you can indicate that the transformer should be
added by giving it an attribute label with the value content. The first xslt transformer is
labeled using the attribute label with the given value.

The process here is the same as in the first example. All sitemap components are added to
the pipeline until one component is labeled. This component is added as well, but the
following ones are skipped. Then the view’s sitemap components are appended. For this
example, the view is assembled from the html generator, the first xslt transformer, and
the xml serializer from the content view.

Regardless of whether the label is defined in the components or pipelines section of the
sitemap, the original sitemap is left immediately after the first component containing the
label. Even if you have more than one component in the pipeline marked with the
required label, only the first component containing it is used.

As you will see at the end of this chapter, the links view is important for the offline
generation of documents using Cocoon’s command-line interface.

Now that you know about Cocoon’s views, you know about nearly all of a sitemap’s
sections. So, let’s discuss the last one.

 178

Sitemap Resources

The last section we have yet to explain is the map:resources section (see Listing 6.17).
This section is very similar to the map:pipeline section. You can define XML
processing pipelines containing a generator, transformers, and a serializer and give this
pipeline a name for further use in the map:pipelines section of the sitemap.

Listing 6.17 An Example of a Sitemap Resource

<map:resources>
 <map:resource name="Not authorized">
 <map:generate src="notauthorized.xml"/>
 <map:transform src="tohtml.xsl"/>
 <map:serialize/>
 </map:resource>
</map:resources>

You can refer to this resource from the map:pipelines section using the unique name
for these sitemap resources. So a sitemap resource can be compared to a macro or a
placeholder.

Currently, the only place in Cocoon where you can use sitemap resources is for redirects.

Redirects

Basically, a redirect allows you to jump from one pipeline to another. You can redirect to
a totally different URI or to a previously defined sitemap resource. Listing 6.18 shows
two examples.

Listing 6.18 Examples of Redirects

<map:redirect-to uri="helloworld"/>
<map:redirect-to resource="Not authorized"/>

Unfortunately, the semantics of the map:redirect statement differ a bit from the
semantics of the other sitemap components. Usually if you specify a source, such as for a
generator, and you do not specify a protocol for the URI, Cocoon automatically adds the
context protocol.

However, for a redirect to a relative URI, this is not the case. Cocoon implicitly adds the
same protocol used to request the original document. For example, if you request a
document with http://localhost:8080/cocoon/original_document, and this results
in the execution of the previous redirect to helloworld as shown in Listing 6.18, Cocoon
generates a new URI using the old one as a base. The redirect then references
http://localhost:8080/cocoon/helloworld. So a relative URI is translated into an
absolute URI.

 179

Cocoon does not directly process redirects. Instead, an HTTP response to the client is
generated. This response contains the information to process a redirect in addition to the
redirect URI as content. The client itself recognizes this redirect and starts a new request
with the new URI. Whenever you use a redirect, this results in at least two requests to
your server. The first one identifies the redirect, and the second requests the redirected
document.

If you redirect to a sitemap resource, the processing flow is continued in the new sitemap
resource. Thus, the sitemap components defined in this resource are executed.

Now that you know about all the additional sitemap features and some Cocoon
configuration points, it is time to bring in two new components and show you some
examples that use them and the concepts described in this chapter.

Connecting to a Database

You can use the sql transformer in a pipeline to integrate a database as one of the data
sources in a Cocoon application. Using this transformer, you can send any SQL
command to a database. The transformer is controlled by commands contained in the
XML stream processed by the transformer. If the SQL command fetches data from the
database, the data is converted into XML.

You might wonder why this is a transformer and not a generator. The key point is
usability. In general, SQL statements can have many options and parameters. This starts
with specifying the database to use, the tables, and the rows, and it ends with complex
information such as search phrases. If you want to use a generator, you have to specify all
this in the sitemap as parameters for the generator. Changing a simple value would then
require changing the sitemap.

Using a transformer allows you to build more-complex pipelines in which the
information on what to fetch from the database is determined at runtime using the file
generator, for example. When the request is processed, the file generator reads an XML
file that contains the actual parameters for the transformer. Because the file generator can
request the XML file via a protocol such as HTTP, this allows the dynamic generation of
those commands.

Listing 6.19 shows the configuration of the sql transformer in the sitemap and how to use
it in a pipeline.

Listing 6.19 SQL Transformer

<map:transformers>
 <map:transformer name="sql"
 src="org.apache.cocoon.transformation.SQLTransformer"/>
</map:transformers/>
...
<map:pipeline>
 <map:match pattern="test">

 180

 <map:generate src="document.xml"/>
 <map:transform type="sql"/>
 <map:transform src="tohtml.xsl"/>
 <map:serialize/>
 </map:match>
</map:transform>

You can send any valid SQL command to the database. This is triggered by your XML
document. Listing 6.20 shows an XML document that is read by the file generator and
then is transformed by the sql transformer.

Listing 6.20 A Simple SQL Example

<document>
 <sql:execute-query xmlns:sql="http://apache.org/cocoon/SQL/2.0">
 <sql:use-connection>personnel</sql:use-connection>
 <sql:query>
 select id,name from department_table
 </sql:query>
 </sql:execute-query>
</document>

The sql transformer is triggered by XML elements that have the transformer’s namespace,
http://apache.org/cocoon/SQL/2.0. Each command is started by the element
execute-query. Nested inside this element is all the information for the sql transformer,
a combination of elements and text information.

The element use-connection defines which connection (or database) should be used for
the SQL command. The following example will show you how you can configure
database connections. For now, just assume you have defined a database connection
named personnel.

Inside the query element, you can see the actual SQL command to be sent to the database.
When the sql transformer receives such an XML block, it removes it from the XML
document. If the SQL command fetches some data, this data is converted to XML and is
inserted instead of the XML block controlling the sql transformer.

How is this data converted? An element rowset is created. Inside this element for each
fetched row, an element named row is created. Inside this element, for each fetched
column of this row, an element is created and is named the same as the column name.
Inside this element is a text node with the value of that column from the database. All
these elements get the namespace of the sql transformer.

You could then simply add a stylesheet to the XML processing pipeline, converting the
rowset to an HTML table or whatever you like. The output displayed in Listing 6.21 is an
intermediate XML document that is created during the pipeline processing. Because you
will receive HTML in your browser, you will never notice this document; you will see
only the starting XML document and the final output.

http://apache.org/cocoon/SQL/2.0

 181

Listing 6.21 The Document after a SQL Transformer Run

<document xmlns:sql="http://apache.org/cocoon/SQL/2.0">
 <sql:rowset>
 <sql:row>
 <sql:name>Matthew</sql:name>
 <sql:id>1</sql:id>
 </sql:row>
 <sql:row>
 <sql:name>Carsten</sql:name>
 <sql:id>2</sql:id>
 </sql:row>
 </sql:rowset>
</document>

But what if your resulting document does not display the data you wanted? You need to
know what the sql transformer has output in order to see if your SQL statement is
working. You can, of course, change your document’s pipeline definition. Instead of
using a stylesheet to produce HTML and the html serializer, you can simplify the pipeline
by removing the stylesheet and using the xml serializer. This shows you the data
delivered by the sql transformer directly in your browser.

Another answer to this problem is to use the log transformer to see what is happening in
the pipeline.

Logging

Usually pipelines consist of three or more sitemap components, starting with a generator,
going to some transformers, and ending with a serializer. In the case of the file generator,
you can see the starting XML document that is read by this component and the end result
of the pipeline processing.

But what can you do if your output document doesn’t look as you expected? One simple
solution is to change your pipeline. Just remove all transformers after the component you
want to test, and add the xml serializer. You will get the output of the transformer you
want to test directly in XML.

If this stage of your pipeline looks right, you can then remove the next transformer in the
chain and look at that output, and so on until you know where the fault is.

Another possibility is the log transformer (see Listing 6.22), which can be chained
between two sitemap components. As the name suggests, this transformer logs the output
of the sitemap component before the log transformer.

Listing 6.22 The Log Transformer

<map:transformers>
 <map:transformer name="log"
 src="org.apache.cocoon.transformation.LogTransformer"/>

 182

</map:transformers/>
...
<map:pipeline>
 <map:match pattern="test">
 <map:generate src="document.xml"/>
 <map:transform type="sql"/>
 <map:transform type="log">
 <map:parameter name="logfile" value="logfile.log"/>
 <map:parameter name="append" value="no"/>
 </map:transform>
 <map:transform src="tohtml.xsl"/>
 <map:serialize/>
 </map:match>
</map:transform>

In Listing 6.22, the output of the sql transformer is logged. When no parameter is set to
the log transformer, it outputs everything to the servlet log of your servlet engine. But
you can, of course, redirect the output to a file on your local hard drive. The sitemap
parameter logfile defines the location of that file. With the parameter append, you can
specify whether a new log file should always be written, or if the output should be
appended to an existing file.

But be careful with using the log transformer in a servlet environment. It is not safe for
concurrent requests. So if more than one client requests a document containing the log
transformer, the output is mixed by these two pipelines. So for debugging, you should be
sure that only one client invokes the request at a time.

This section covered the advanced features of the sitemap. You saw that a Cocoon
application is not limited to just one sitemap, but that sitemaps can be cascaded. This
feature is particularly useful when the application consists of separate parts. Using the
available protocols and components such as the sql transformer, you can integrate
existing data sources into your application. Content aggregation allows configured
information sources to be flexibly combined into a single document. The document you
receive as a pipeline’s output is only one of the views Cocoon can provide. Using the
views concept, you can define alternative pipelines that can return, for example, only the
content or the links of a particular document. You can use the logging mechanism to
check on what is happening in your pipeline, which is important if things do not work as
expected.

Although the most common form of running Cocoon is as a servlet, this is only one way
of using the framework. In fact, it is only a very small part of Cocoon that is servlet
specific. This part is only one of the interfaces Cocoon provides to the outside world.
Another important interface that allows Cocoon to be used in different environments is
the Command-Line Interface.

Using the Command-Line Interface

 183

We previously mentioned one challenge when building web applications: the offline
generation of web sites. You start a process, and this process builds the whole web site
into a directory. You can then put it on your web server or on a CD.

This generated web site then does not need sophisticated software components on the
server to run. It only needs a simple web server that can serve static files from the
filesystem. All the real work is already done in the generation process.

That’s where Cocoon’s Command-Line Interface (CLI) comes into play. You can utilize
it to generate a whole web site. This might seem like a great idea, but there are limitations.
You can generate an offline version only if the content conforms to certain rules.

All the documents need to be static, which means that each time a document is requested,
the content should be the same. For example, if you want to create a document that
always displays the current stock account, this cannot be generated for offline viewing. If
your documents are personalized, this is not possible with offline generation either.

So if you look at the challenges for current web applications, there seem to be only rare
cases in which offline generation is really useful.

The Cocoon CLI can be used for other purposes as well. Invoking the CLI is nearly the
same as requesting a document from Cocoon using the servlet engine. For example, it
could be used to generate invoices offline as PDF files. Rather than having someone
invoke a web page that generates bills, save them to disk, and then mail them to the
customers, you can write a script that is invoked periodically to fulfill the same task using
the CLI.

We have shown you how the Cocoon documentation is built using Cocoon itself. In
addition, the Cocoon developers use the CLI to generate this documentation and put it on
the Apache web server. All the offline generated images and HTML files must be put on
the server, because it currently does not run a servlet engine where Cocoon could be
installed. Listing 6.23 shows the Cocoon CLI.

Listing 6.23 Cocoon’s Command-Line Interface

Usage: java org.apache.cocoon.Main [options] [targets]

Options:
 -h, --help
 print this message and exit
 -u, --logLevel <argument>
 choose the minimum log level for logging (DEBUG, INFO, WARN,
 ERROR, FATAL_ERROR) for startup logging
 -c, --contextDir <argument>
 use given dir as context, this defaults to ./webapp
 -d, --destDir <argument>
 use given dir as destination
 -w, --workDir <argument>
 use given dir as working directory

 184

 -r, --followLinks <argument>
 process pages linked from starting page or not (boolean
 argument is expected, default is true)

The CLI is implemented by a Java class (org.apache.cocoon.Main). So the CLI is
started by starting this Java class. Because this class is contained in a JAR file, the
command looks like this if you are inside the directory where all JAR files for Cocoon
are stored: java -jar cocoon.jar followed by the options.

The most important option is -c. It defines where the Cocoon context directory can be
found. This directory must contain cocoon.xconf. With the option -u, you set the log
level. The destination directory (option -d) defines the location where the generated
documents are stored. The work directory holds temporary files (option -w).

After the options, you define the documents you want to generate. Cocoon then processes
these documents one after the other and saves them to the destination directory.

If followLinks is turned on (which is the default), Cocoon processes not only the
documents you gave as input but also all documents referred by this one. So it crawls the
whole web site. This is in fact used for the Cocoon Documentation System. Only the
starting URL is specified (index.html). Because this document includes the navigation
bar, all other documents are referenced by this document.

The crawling is done using views. The CLI first gets the link view of a document. This
returns all the document’s links and references (including images). Then the document is
processed and saved to the destination directory. Afterwards, all collected links are
processed, one after the other. Of course, the CLI makes sure that each document is
processed only once and that no infinite recursion occurs.

After the CLI is finished, you have the whole web site in your destination directory. This
includes all HTML documents, all images, all rendered SVG graphics, and so on. You
could then copy this directory to a CD or to a web server for publishing.

For your first steps with Cocoon, the CLI might not be that important, but as you learn
more and more about Cocoon, sooner or later you might need it. But you don’t have to
worry. Just start creating your own web site, documents, and so on and learn the Cocoon
way. The following practical examples and tips will help you build more-advanced
applications with Cocoon.

Practical Examples and Tips

This chapter has covered a lot of topics so far. Hopefully you have been able to use some
of these new features to extend an application you already have built. We will now look
at some examples and give you a few tips on getting the most out of Cocoon when you
use it to build applications that other people might also use.

 185

The two following examples help you understand the components and concepts presented
so far. The first one is a small example showing you how to use the sql transformer to
fetch data from a database. You might need to use the log transformer in this example if
you have any problems connecting to the database. The second example is a bigger
real-world example: the Cocoon Documentation System. This system uses nearly all the
concepts explained so far.

We will then look at how you can make sure that your Cocoon application is set up to
handle all the requests it might receive when you release it into a production
environment.

A SQL Example

The following example requires a database that can be used from Java, so you need a
JDBC driver. Instead of using your own database, you can use the included HSQLDB
shipped with the Cocoon distribution. This database is completely written in Java and can
be started automatically when Cocoon is run.

However, if you want to use your own database, you have to include a suitable driver. Put
this driver class either in a JAR file in Cocoon’s WEB-INF/lib directory or as a class file
in the WEB-INF/classes directory. In order to make the driver available, you have to add
it to the list of loaded classes in the web application deployment descriptor (web.xml), as
shown in Listing 6.24. The parameter load-class gets a list of classes that are
automatically loaded at startup.

Listing 6.24 Adding Drivers

<!--
 This parameter is used to list classes that should be loaded
 at initialization time of the servlet.
 Usually these classes are JDBC Drivers used
-->
 <init-param>
 <param-name>load-class</param-name>
 <param-value>
 <!-- For HSQLDB: -->
 org.hsqldb.jdbcDriver
 <!-- ODBC -->
 sun.jdbc.odbc.JdbcOdbcDriver
 </param-value>
 </init-param>

Next you have to add a connection to your database in cocoon.xconf. Listing 6.25 is an
excerpt from cocoon.xconf that shows a custom connection called personnel.

Listing 6.25 Configuring Data Sources

<datasources>
 <jdbc name="personnel">
 <dburl>jdbc:hsqldb:hsql://localhost:9002</dburl>

 186

 <user>sa</user>
 <password></password>
 </jdbc>
</datasources>

For this connection, you can define the URL to the database, the username, and the
password. These three settings depend on which database you use. The user and
password might be optional. If you want to use the HSQLDB, the values shown here
should work right out of the box.

After you have defined your database connection, you can use it in the sql transformer by
specifying the use-connection element for the transformer. Save the XML document
shown in Listing 6.26 to the Cocoon context directory, and name it sqlexample.xml.

Listing 6.26 A Simple SQL Example

<document>
 <sql:execute-query xmlns:sql="http://apache.org/cocoon/SQL/2.0">
 <sql:use-connection>personnel</sql:use-connection>
 <sql:query>
 select id,name from department
 </sql:query>
 </sql:execute-query>
</document>

If you are using your own database, you might need to adjust the select statement. A
stylesheet for the SQL data, transforming it to a simple HTML table, could look like
Listing 6.27. Save this stylesheet, and name it sqlexample.xsl.

Listing 6.27 A Simple SQL Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:sql="http://apache.org/cocoon/SQL/2.0">

<xsl:template match="document">
 <html><body><table>
 <xsl:apply-templates select="sql:rowset/sql:row"/>
 </table></body></html>
</xsl:template>

<xsl:template match="sql:row">
 <tr>
 <xsl:apply-templates/>
 </tr>
</xsl:template>

<xsl:template match="sql:id|sql:name">
 <td>
 <xsl:value-of select="."/>
 </td>
</xsl:template>

 187

</xsl:stylesheet>

Again, if you use a custom database and table, you might have to adjust the stylesheet to
reflect different column names. The pipeline for this example is very simple. It is shown
in Listing 6.28.

Listing 6.28 A Sample SQL Pipeline

<map:pipeline>
 <map:match pattern="sqldocument">
 <map:generate src="sqlexample.xml"/>
 <map:transform type="sql"/>
 <map:transform src="sqlexample.xsl"/>
 <map:serialize/>
 </map:match>
</map:pipeline>

Start your browser, and request http://localhost:8080/cocoon/sqldocument. You
will get the XML data from the database displayed as an HTML table. If you are using
your custom database and you face any problems, add the log transformer after the sql
transformer to see what data is coming from your database.

Using databases with Cocoon is very easy, as you can see from this example. To
demonstrate more of the features introduced in this chapter, we will now look at a larger
working example.

The Cocoon Documentation System

One of the best sample applications using many of the features we have described in this
and the previous chapters is the Cocoon Documentation System. Because Cocoon itself is
an XML publishing framework, the documentation is, of course, generated by Cocoon.
Some of the features the documentation system uses include content aggregation,
subsitemaps, the cocoon protocol, and image generation using SVG. All these features
allow the documentation to be written in a fashion that separates the content from the
layout.

Because this example is rather complex and uses many resources, we will examine only
the basic idea behind this system. In addition, we will look at some excerpts from each of
the files. If you’re interested in seeing more than what’s presented here, the whole system
can be found inside the Cocoon distribution.

The Cocoon documentation (see Figure 6.9) is served by a subsitemap that is independent
of the main sitemap. (You will find the subsitemap and all other resources in the
documentation directory of your Cocoon context directory.)

Figure 6.9. The Cocoon documentation.

 188

The documentation is currently available in HTML. Each HTML page consists of a static
header, a navigation bar on the left side, and the content for the current document on the
right.

The navigation bar is created by an index, which is called a book in Cocoon. The
documentation is arranged in several hierarchically nested books. There is one main book,
and it contains documents and subbooks. You can compare this to a directory structure
such as your filesystem. A book is similar to a directory: It has a name, and it contains
documents (files) or other books (directories).

As you might have already guessed, each HTML document is created using content
aggregation and the cocoon protocol. Let’s have a look at the sitemap entries, shown in
Listing 6.29.

Listing 6.29 An Excerpt from the Cocoon Documentation Sitemap

<map:pipeline>

 <map:match pattern="*.html">
 <map:aggregate element="site">
 <map:part src="cocoon:/book-{1}.xml"/>
 <map:part src="cocoon:/body-{1}.xml"/>
 </map:aggregate>
 <map:transform src="stylesheets/site2xhtml.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 <map:parameter name="header" value="graphics/{1}-header.jpg"/>
 </map:transform>
 <map:serialize/>

 189

 </map:match>

 <map:match pattern="**book-**.xml">
 <map:generate src="xdocs/{1}book.xml"/>
 <map:transform src="stylesheets/book2menu.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 <map:parameter name="resource" value="{2}.html"/>
 </map:transform>
 <map:serialize type="xml"/>
 </map:match>

 <map:match pattern="body-**.xml">
 <map:generate src="xdocs/{1}.xml"/>
 <map:transform src="stylesheets/document2html.xsl"/>
 <map:serialize/>
 </map:match>

</map:pipeline>

The document names available from these pipelines do not follow our recommendation:
They use explicit endings such as .xml and .html. The HTML document is aggregated by
two parts—a part called book, and a part called body. The book part reads the current
book and creates the navigation bar from it. This navigation bar is transformed by a
stylesheet to partial XHTML.

The body part reads the real content from the XML document and transforms it into
partial XHTML as well. The main pipeline for the document aggregates these two parts
and combines the XHTML fragments using a stylesheet. It also adds the constant header.

The navigation bar and title displayed in the document’s header are actually images.
These images are rendered using SVG. We left out the pipelines for the images, but they
are specified in the installed Cocoon application. Inside the Cocoon context directory is a
directory called documentation. This directory contains a subsitemap named
sitemap.xmap that contains all pipelines for the whole documentation system.

This example of a real application shows how a web site can be built very easily with
Cocoon. By using content aggregation, you separate the different parts of one document
and can maintain them more easily. Just take your time and have a look at this application
and how it works. It will help you understand the concepts you have learned so far. You
will also get a look behind the scenes of Cocoon’s documentation system. Of course, one
of the most important features of any Internet application, such as the documentation
system or a portal built with Cocoon, is how fast the required information is returned.
After all, no one wants to wait around for minutes until the browser displays the
requested document. Cocoon provides two methods of speeding up the application:
pipeline caching and component pooling.

 190

The Cocoon Caching Mechanism

As you have seen, Cocoon generates documents using pipelines that contain a variety of
components. You have seen that each time a request reaches a pipeline, the required
document is generated and returned to the calling application. Using Cocoon’s caching
mechanism, you can control whether the document is actually generated or whether it can
be returned from a cache. This speeds up the time it takes to return the document, because
the pipeline does not have to be processed completely. Cocoon’s caching algorithm is
very flexible, but fortunately it is also very easy to handle. Let’s start with a description
of the caching algorithm.

Cocoon generates a stream pipeline for each request. This stream pipeline either is a
reader or consists of an event pipeline and a serializer. The event pipeline in turn is
assembled by a generator and the used transformers (if any).

Cocoon’s caching algorithm can cache the result of a stream pipeline and/or an event
pipeline. The caching for such a pipeline is turned on or off in cocoon.xconf (see Listing
6.30). Because everything in Cocoon is implemented using Avalon components, you
simply specify which implementation for an event or stream pipeline should be used: the
caching or the noncaching one. You will learn more about these components when we
explain Cocoon from the developer perspective in Chapter 8.

Listing 6.30 Turning on Caching in cocoon.xconf

<event-pipeline
class="org.apache.cocoon.components.pipeline.CachingEventPipeline"/
>

<stream-pipeline
class="org.apache.cocoon.components.pipeline.CachingStreamPipeline"
/>

These lines turn on caching for both pipelines. The code shown in Listing 6.31 turns it off.
Of course, you can mix it and turn on caching for event pipelines but not for stream
pipelines. If you want to change your setting, locate the lines for event-pipeline and
stream-pipeline in your cocoon.xconf and change the class attribute.

Listing 6.31 Turning off Caching

<event-pipeline
class="org.apache.cocoon.components.pipeline.NonCachingEventPipelin
e"/>

<stream-pipeline
class="org.apache.cocoon.components.pipeline.NonCachingStreamPipeli
ne"/>

But what does it mean if caching is turned on? The following explanation is simplified
for the user perspective. We will look at the full power of the caching algorithm in
Chapter 8.

 191

But for now, let’s start with the stream pipelines. The result of a stream pipeline, for
example, can be cached if it is a reader, which can cache. So we can redefine the question:
When can a reader cache?

A reader (and this is also true for the other sitemap components, as you will soon see) can
cache if it can detect that the content has changed since it was last read. For example, the
resource reader reads a file. It can detect whether the file has changed by looking at what
time the file was last changed.

So the first time the resource reader reads a document, the caching algorithm stores this
document, along with the current time. The next time this document is requested, the
caching algorithm provides this time to the reader, which simply checks whether the
cached content is still valid. If it is, the cache serves the document. If it is not valid, the
cached content is discarded, the reader reads the file again, and the cache stores this along
with the current time.

But there are cases in which the reader cannot detect content changes, such as if it gets
the read file via HTTP or any other connection. In this case, the reader can’t support
caching, so nothing is cached. This means that even though Cocoon provides a means of
caching pipelines, it is still dependent on the data source to provide a means of
determining whether the content has changed since it was last accessed.

If the stream pipeline consists of an event pipeline and a serializer, both parts must
support caching. Most serializers in Cocoon support caching, because they are only
dependent on the XML they receive from the event pipeline.

The question of whether an event pipeline can be cached is more complex, because the
pipeline consists of several components. It is cacheable only if all the components are
themselves cacheable. In the event pipeline, the caching algorithm asks each component
if it supports caching, starting with the generator. For each component that supports it, a
unique key is generated. Then the next pipeline component is queried. This process
continues until either all components are queried or one component is not cacheable.

The keys of all cacheable components are chained, and together they build the cache key.
The request is processed, and the document is built. The cache stores the result of the last
component, indicating cacheability. The next time this document is requested, the key is
built, and the cached content is fetched from the cache.

Next, the cache asks all components of the event pipeline if their input has changed since
the time the content was cached. For example, the generator checks this by looking at the
last modification date of the XML document, the xslt transformer checks the date of the
stylesheet, and so on. Only if all state that the content is still valid is it used from the
cache. Otherwise, the document is generated from scratch. So the event pipeline tries to
cache as much of the XML processing pipeline as possible.

 192

Caching the pipeline results and being able to return them as fast as possible is perhaps
the key factor to whether an Internet application built with Cocoon will be successful and
whether people will like using it. Cocoon’s built-in caching already provides a powerful
mechanism for doing this and should be used whenever possible. Another important
factor in any component-based system is the performance at which new components are
created when they are needed.

Pooling Your Components

Nearly everything inside Cocoon is an Avalon component. Without going into too much
detail about the Avalon component model and the life cycle of components, we’ll explain
how you can fine-tune your application in this area.

For each request received by Cocoon, a lot of Avalon components are generated—one
event pipeline, one stream pipeline, one generator, one or more transformers, and a
serializer. (In fact, there are more, but these will do for the moment.)

If several documents are requested at the same time, this set of components is created for
each request. For example, if 50 documents are requested simultaneously, you end up
with 50 event pipelines, 50 stream pipelines, 50 generators, and so on.

One of the most time-consuming operations in Java is the creation and destruction of new
objects. Therefore, the Avalon component model supports the pooling of objects. This
means that a component is created once, locked when used inside a request processing,
and released for further use after the request is processed. It is not destroyed and can be
reused for the next request.

If only one request at a time is processed, such a pooled component is created once,
locked for this request, used for this request, and released afterwards. When the next
request arrives, the same process starts again.

If more than one request is processed at the same time, a pooled component must be
created for each request. If 50 requests arrive simultaneously, 50 components must be
created. If they all can be pooled, the pool grows to 50 components. At first glance, this
seems desirable, but imagine that one day 1000 requests are processed simultaneously.
You end up having 1000 components in your pool, although the average of simultaneous
requests is less.

In order to adjust your application to the load you might have, you can control the
pooling of the Avalon components. You can define how many components are to be
stored inside the pool by specifying a minimum and maximum number, as well as how
the pool should grow if no free component is available from the pool. If your pool
reaches the maximum, but there are more requests to serve, Avalon creates new
components to process the request, but these components are discarded afterwards and
are not added to the pool.

 193

The configuration of this pooling is on a per-component basis. So you set the values
separately for each component—for the stream pipeline, for the event pipeline, for the
file generator, and so on. Listing 6.32 shows a sample pooling configuration.

Listing 6.32 An Example of a Pooling Configuration

<stream-pipeline
class="org.apache.cocoon.components.pipeline.CachingStreamPipeline"

 pool-max="32" pool-min="16" pool-grow="4"/>

<generator name="file" src="org.apache.cocoon.generation.FileGenerator"
 pool-max="64" pool-min="16" pool-grow="4"/>

In Listing 6.32, you see the configuration for the stream pipeline, which is done in
cocoon.xconf, and for the file generator, taken from the sitemap. Remember that both the
sitemap and cocoon.xconf contain components that are based on Avalon and therefore
can be pooled.

Both configurations are similar in that they use three special attributes. pool-min defines
the minimum number of components in the pool. When the pool is instantiated, this
number of components is created at startup. pool-max defines the maximum number of
components to hold in the pool. pool-grow gives the number by which the pool increases
each time no free component is available.

If you set the log level to DEBUG, you can see if your pools are too small by searching for
a message containing the phrase “decommissioning instance of.” This message is output
each time a poolable instance is created when the pool has reached maximum capacity.
The component’s class name follows the phrase, so it is possible to adjust the setting for
exactly this component.

With the tips on caching and component pooling, we have covered the two most
important ways to make a Cocoon application as fast as possible. These features are
provided by Cocoon and can be used in different application scenarios. Depending on the
type of application being built, other factors can influence the application’s performance.
We will cover some further aspects when we talk about different types of applications in
Chapter 11, “Designing Cocoon Applications.”

Wrapping Up the User Perspective

We have reached the end of our tour through Cocoon from the user perspective. All the
Cocoon features we have discussed up to this point are available without your having to
write any Java code to use them. You learned about the additional ways to configure
Cocoon and, in particular, which configuration parameters exist to allow a Cocoon-based
application to return the requested documents as quickly as possible.

Apart from the more common components, such as transformers and generators, Cocoon
also provides additional components such as action-sets, and it allows different pipelines

 194

to be combined using content aggregation. We completed the explanation of the different
sitemap sections, especially views and sitemap resources. We also looked at some
examples, such as connecting Cocoon to a database.

Building applications using these concepts can get quite complicated, but luckily Cocoon
provides ways of staying on top of what you are doing. Splitting the separate areas of an
application into different subsitemaps is one way of making sure the solution is modular.
Using the log transformer inside a pipeline allows potential errors to be found quickly
and also shows you how the different components can be plugged in to a pipeline to
extend the functionality.

We realize that this is a lot of information to take in. We suggest that you try and adapt
the examples we have presented to do something different. Perhaps you could integrate a
different data source into your application or provide a different output format for your
data. Play around with the components and see what types of pipelines you can build.
Add the log transformer to a pipeline and look at what goes on between the different
components.

You might also find some ideas for your own applications in the next chapter, where you
will expand the news portal you built in the last chapter and add some of the things you
have just learned.

 195

Chapter 7. Cocoon News Portal: Extended Version

Now that you have learned more about what Cocoon offers in the way of components and
concepts for building applications, you will now put some of what you have learned to
use by extending your news portal. You developed the first version of the portal in
Chapter 5, “Cocoon News Portal: Entry Version.” Now you will extend the solution by
adding a database, where you will store portal users and their individual profiles. Most
Internet applications require some form of database, so integrating one into Cocoon is
one of the more common tasks that face any Cocoon application builder. The advantage
of the Cocoon distribution is that a database is already included, so there is no need to set
up any additional software.

As soon as a user has logged on to the portal, you need to let her edit the news she
receives. Storing the user’s profile in the database enables you to provide an HTML form
in which the data can be edited. Because this is the extended version of the portal, you
will also let Cocoon aggregate different news feeds into a single document and present
the complete news page to the user.

Before you begin, you need to make sure you have Cocoon installed, as described in
Chapter 3, “Getting Started with Cocoon.” Although it is not necessary to have the entry
version of the portal running, we recommend that you do this first to familiarize yourself
with some of the basic concepts we will expand on in this chapter. You will find the first
version of the news portal in Chapter 5.

As with all the examples in this book, we have provided all the files on the companion
CD. Instead of editing the various information files yourself, you can copy them from the
CD into your setup.

You will start by looking at the application’s architecture and defining the various
functions you want to present. Because the extended version of the portal is more
complex than the first version you built, it makes sense to start with a concept of what
you want to do. Then we will examine the components you need in order to implement
the various functions.

 196

While going through this example, please remember that we’re deliberately keeping it as
simple as possible. Don’t expect to win any awards for the presentation. At all times you
are encouraged to extend the example and add your own look and feel or cater to
situations we have omitted. There are some further ideas for changing this version at the
end of this chapter.

Designing the Portal

You will define your portal’s architecture by looking at the functionality you need to
provide and examining the flow through the individual functions. This will help you
define the structure inside Cocoon.

Obviously, the basic functionality you need is the ability to authenticate the user. So you
need a form where the user can enter the ID and password. That data will be sent to
Cocoon and checked against a database. If the user is contained in the database and the
password is entered correctly, the user receives a personalized portal page containing the
news feeds she has subscribed to. You will also personalize the page by changing the
background color. For the sake of simplicity, you will define that if the authentication is
unsuccessful, the user will just get a blank welcome page with no news feeds.

From the portal page, the user has the option of editing the news feeds she has subscribed
to. Your application will generate a document containing the list of news feeds, and the
user can then select a feed to delete or add a new feed. All the changes are then sent back
to Cocoon and are stored in the database so that they are available when the user logs in
the next time.

Now that we have outlined the basic functionality, it is time to take a look at each
function in more detail. By doing this, you should arrive at the Cocoon technologies and
concepts you need in order to realize the complete solution.

Logging In to the Portal

Logging in to the portal consists of several different steps that each mean using different
components. Here are the steps:

1. A request is made to the server to access the login form.

2. The user enters the data (ID and password), which is submitted to the server.

3. The database is accessed. The user is selected from the user table based on the
entered information.

4. The selected information also contains the user’s preference for the background
color.

 197

5. If the process is successful, the news feed table is accessed, and the configured
news feeds for the user are selected.

6. The news feeds are transformed into appropriate URIs to access the news server
over the Internet.

7. The various news data is aggregated into a single XML file.

8. The XML file is transformed into the output format and is presented to the user.

Figure 7.1 shows the login page that the user receives as a result of the first step.

Figure 7.1. The Login page.

After the last step has been completed, the user should see her selected news feeds, as
shown in Figure 7.2.

Figure 7.2. The Portal page containing the selected news feeds.

 198

Because you’ve specified that the user may edit the selected news feeds, we next need to
take a look at this function.

Editing the News Feeds

After the user logs on, the news feeds are fetched and presented. On the same page, you
will also provide a link to the edit function. When the user clicks that link, several steps
need to be performed on the server:

1. A parameter containing the user ID is passed to the server with the request.

2. The called function takes the passed information and accesses the news feed table
in the database.

3. The names of the selected news feeds are formatted into a form that the user can
manipulate.

4. The user can delete certain feeds or add new ones by way of a simple edit box on
the form.

5. The form data is submitted to a function on the server.

6. The server receives a parameter containing the requested action (add or delete)
and the user ID.

 199

The document that the user receives in order to edit her news feeds is shown in Figure
7.3.

Figure 7.3. The Edit page allows news feeds to be deleted or added.

After the data has been passed back to the server, the database tables must be edited to
reflect the new information. Here are the steps in the editing process:

1. Depending on the requested action, the news feed table is updated to reflect the
changes.

2. As a result of the changes, a new edit form is generated and is returned to the
user.

3. From the edit form, the user can access the portal’s login page.

As you will see when we explore the possibilities of building the Cocoon pipelines for
these functions, you can combine these editing steps into a single pipeline. This will
greatly simplify the changes you need to make to the sitemap.

The next step is to take a look at the different data sources your portal needs and to get
started on actually configuring your application.

Integrating Data Sources into the Portal

 200

The extended version of your portal has two data sources. You will use a database to
store various information and an online news feed to provide the news items the user
selects.

Storing Information in the Database

As installed, Cocoon comes with an integrated HSQL database that you can use to store
your users and their profiles. Cocoon also comes with the necessary components needed
to integrate other databases via Java Database Connectivity (JDBC).

The first step is to configure the database tables you need. You do this by using the script
that HSQL provides and that is read and executed when the server is started. Because the
HSQL database is integrated into Cocoon, it is started automatically when the servlet
engine is started. Your portal needs two new tables in the database. In addition to creating
those tables, you will add some initial data so that your database is not empty to begin
with.

Adding Tables to HSQL

HSQL provides a file called cocoondb.script that can be found in the \WEB-INF\db
directory of a Cocoon installation. You can edit this file with any text editor. You need to
append the lines shown in Listing 7.1 to the end of the file.

Listing 7.1 Additional Entries for the cocoondb.script

CREATE TABLE PORTALUSER_TABLE(ID VARCHAR,PASSWORD VARCHAR,COLOR VARCHAR,
UNIQUE(ID))

CREATE TABLE MOREOVER_TABLE(ID INTEGER,NAME VARCHAR,NEWSFEED
VARCHAR,UNIQUE(ID))

INSERT INTO PORTALUSER_TABLE VALUES('cocoon','magic','white')
INSERT INTO PORTALUSER_TABLE VALUES('matthew','wizard','yellow')
INSERT INTO MOREOVER_TABLE VALUES(1,'matthew','banking')
INSERT INTO MOREOVER_TABLE VALUES(2,'cocoon','usa')
INSERT INTO MOREOVER_TABLE VALUES(3,'cocoon','banking')

As you probably can understand from these lines, you are creating two additional tables
and inserting some sample data into them. Feel free to change the values if you would
rather log in to the portal using your own name.

The user table contains an entry for each portal user. The entry consists of the ID,
password, and the user’s favorite color. Please note that this version of the portal only
allows the color to be changed in this script, not via a form. But that is something we
leave to you to extend as an exercise.

The Moreover table contains the configured feeds for each user. Each entry consists of a
unique ID, username, and news feed name.

 201

Be sure to save the edited file to its original location. That completes the HSQL
configuration. The next time the servlet engine is started, this file will be executed and
the new tables created. If you choose to edit this file later, you will notice that the order
of the commands has changed. This is because HSQL dynamically updates the file when
it is running. However, this has no effect on the portal.

Now that you have set up HSQL, you need to make Cocoon aware of your new tables and
create a database connection you can use inside the portal.

Configuring a Connection in cocoon.xconf

Next you need to create a new database connection. You do this by adding a few lines to
a file you already know: cocoon.xconf. You can open this file with your favorite XML
editor (or a simple text editor if you prefer). Now, you need to find the <datasources>
section of the file. This part of cocoon.xconf contains the configured database
connections, and this is where you will add the new one. Add the lines shown in Listing
7.2 inside the <datasources> tags.

Listing 7.2 Adding a New Database Connection

<jdbc name="portal">
 <dburl>jdbc:hsqldb:hsql://localhost:9002</dburl>
 <user>sa</user>
 <password></password>
</jdbc>

Basically, all you have done is to use the default settings of the existing database
connection and to give your new connection the name “portal.” This means that you can
now use the new connection to access the database from, say, the sql transformer, as you
will see later.

That is all there is to setting up the database for this version of the portal. It’s pretty
simple so far. Of course, the data source you are really interested in is the news site. In
this chapter you will use an available news feed you integrated previously:
Moreover.com.

Your Portal News Provider: Moreover.com

As in the previous version of the portal, you will use news feeds from Moreover.com in
this version of the portal. Moreover offers a large number of different feeds, so you can
adapt the news feeds we have chosen to fit your particular interests.

Accessing the news feeds at Moreover is pretty easy, as you saw previously. Basically,
you need to request a URI that contains an identifier for the news you want to see. A
sample URI looks like this:
http://p.moreover.com/cgi-local/page?index_usa+rss. This link returns current

 202

U.S. news headlines. The actual news is then returned in the XML format RSS. You can
transform this into an output format such as HTML using a stylesheet and transformer.

Because the user might have several feeds configured, you will access Moreover more
than once, combining the XML into a single stream and then formatting the end result
into the completed portal page. You can reuse the stylesheet you used in Chapter 5 and
just make a few changes to it to reflect the fact that you might have multiple feeds and
not just one.

The portal lets the user add and delete configured feeds. Because the URI is the same for
each feed (except for the name of the feed) you only need to store the names in the
database. Therefore, the user only needs to enter a new name in the edit field you present.
To give you some news feeds to play with, here are the names of some additional topics:

• entertainmentgeneral
• mutualfunds
• outdoorrecreation
• personalfinance
• entertainmenttvshows
• foodanddrink
• fitness
• naturalhealth
• parenting

A complete list of feeds can be found on the Moreover.com web site
(http://www.moreover.com). If you choose to use news feeds from Moreover in your own
portal, be sure to comply with the Moreover licensing terms.

In addition, remember that you are using RSS as the data format. This means that it
should be no problem to change the site to a different one offering news feeds or to add
additional sites. You did this in Chapter 3, so perhaps now is a good time to check out the
additional information on RSS feeds in that chapter.

Building the Portal’s Functionality

Up to now we have described the portal in very general terms. But in the end, you will
need to use various Cocoon components and concepts to build the functionality. We will
start with the login process and then look at the editing function.

To set up the portal’s directory structure, you need to create a few new directories below
the Cocoon root:

1. Create a portal directory below the cocoon directory.

2. Create two new directories, resources and styles, below the portal directory.

http://www.moreover.com/

 203

As you go through each function, you will edit sitemap.xmap and add the pipelines you
need. So now is a good time to open the sitemap in an editor and find the best place to
edit the new pipelines. We suggest that you find the opening <map:pipeline> tag and
start the editing process by entering a new pair of <map:pipeline> tags to enclose the
portal pipelines you will add as you continue.

Logging In to the Portal

As you saw when we discussed the login function earlier in this chapter, you first need a
document that allows an ID and password to be entered. The entered data is then sent to
the server to be checked. As a result of a successful authentication, the news feeds are
aggregated, and the complete portal is presented to the user.

Therefore, the first step in the portal login process is the presentation of a form that
allows the user to enter his or her ID and password. The pipeline you need is pretty
simple, as shown in Listing 7.3.

Listing 7.3 The Pipeline to Generate the Login Form

<map:match pattern="newsportal">
 <map:generate src="portal/resources/start.xml"/>
 <map:transform src="portal/styles/start.xsl"/>
 <map:serialize type="html"/>
</map:match>

Add this pipeline to the new <map:pipeline> section you created in the preceding
section. As you can see in this pipeline, the file generator reads an XML file, and a
stylesheet formats the information into HTML, which is then returned to the user.

Listing 7.4 shows the XML data that must be edited into the start.xml file.

Listing 7.4 XML Data for the Entry Form

<?xml version="1.0"?>
<start>
 <pipeline>portal/user/login</pipeline>
 <idfield>id</idfield>
 <passfield>password</passfield>
</start>

The format is quite simple. The tags contained in the file represent parts of the form that
you return to the user. The <pipeline> tag identifies the resource that is to be called
when the user presses the Submit button. The names of the input fields are defined by
<idfield> and <passfield>, respectively.

What you need next is the stylesheet that formats this data in the required output
format—in this case, HTML (see Listing 7.5). Again, we have kept the stylesheet as
simple as possible. You are welcome to add any bells and whistles you want.

 204

Listing 7.5 The Stylesheet That Presents the Login Form

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="start">
<html>
<body>
<h1>Cocoon News Portal Extended Version</h1><p/>
<small>You can use "cocoon" / "magic" or "matthew" / "wizard" to logon</small>
 <form action="{pipeline}" method="post">
 Your Name/Id : <input type="text" name="{idfield}"/>

 Your Password: <input type="password" name="{passfield}"/> <p/>
 <input type="submit" value="login"/>
 </form>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

The stylesheet formats the XML tags into an HTML form. If you changed the initial user
data when configuring the database, be sure to change the comment in the stylesheet.
Also make sure the stylesheet is saved to a file called start.xsl in the styles directory.

That completes the initial pipeline that returns the login form to the user. Now is perhaps
a good time to start the servlet engine and call this pipeline to see if everything works as
expected. If it is successful, the result of calling
http://localhost:8080/cocoon/newsportal (or however your particular Cocoon
installation is set up) should be an HTML form allowing the input of ID and password.

The login page was generated by reading a very simple XML file and applying a
stylesheet that lays out the HTML. As always, and in particular with Cocoon, there are
several other ways of doing this. As soon as the portal is complete, changing the login
pipeline to read in an XHTML file using a Reader component would be a good exercise.

Authenticating the User

After the user has entered his ID and password and presses the Submit button, the data is
sent to Cocoon to be processed by the pipeline portal/user/login. Looking back to where
you defined the XML format, you see that the pipeline is configured there. This means
that you can configure a different authentication pipeline to be used by changing the
content of the <pipeline> tag.

For this sample portal, you’ll wrap two separate application steps into one pipeline. Your
authentication pipeline will authenticate the user against the database you previously set
up and will obtain the names of the feeds and access the news online. This means that the
result of a successful login will be the complete portal page containing the feeds.

 205

Because the pipeline for this function contains quite a few entries, you will take it step by
step and build the pipeline as you go along. Because of the way information is received in
the form of request parameters (from the form input) and because this information is
needed to generate the correct select statements for the database, you will use
stylesheets to build the necessary statements. We mentioned at the beginning of this
chapter that there are other ways of doing this. We refer you to the section “Closing the
Portal” for additional ideas.

The start of the pipeline is very simple. All you need is an XML file that contains a tag to
start things off. Remember that you need a generator as the start point of your pipeline, so
you also need to provide at least the simplest of XML files for it to read.

Listing 7.6 shows the XML file login.xml.

Listing 7.6 login.xml

<?xml version="1.0"?>
<login/>

Save the file login.xml to the portal/resources directory. The next step is to write a
stylesheet that reads the passed parameters from the form and creates the necessary
database select statements. Listing 7.7 shows a stylesheet that does exactly that.

Listing 7.7 A Stylesheet to Generate the Authentication select Statements

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Make the request parameters available -->
<xsl:param name="id"/>
<xsl:param name="password"/>

<xsl:template match="login">

 <user>
 <execute-query xmlns="http://apache.org/cocoon/SQL/2.0">
 <query>
 SELECT id,password,color from PORTALUSER_TABLE where id =

'<xsl:value-of
select="$id"/>' and password = '<xsl:value-of select="$password"/>'
 </query>
 </execute-query>
 </user>

</xsl:template>

</xsl:stylesheet>

Save this file as buildlogin.xsl in the portal/styles directory.

 206

There are a few things to note here. Notice that two parameters in the stylesheet are
defined using the <xsl:param> tag. These are the same names you gave the input fields
in your form. You will see in a moment how to configure the pipeline so that the
parameters are passed to the stylesheet processing. As soon as the processing starts, the
variables contain the values the user entered on the form.

The next thing to point out is the definition of the SQL namespace in the
<execute-query> tag. This is necessary so that the sql transformer will be able to
recognize the commands as they are sent via SAX events.

Inside the select statement are the parameters you defined earlier. This lets you build a
complete statement, including the user ID and password. The select statement selects
the ID, password, and color columns from the table PORTALUSER_TABLE.

Now is a good time to take a look at the pipeline you need in order to process the XML
and XSL files you have developed up to now (see Listing 7.8).

Listing 7.8 A Pipeline Fragment

<map:match pattern="portal/user/login">
 <map:generate src="portal/resources/login.xml"/>
 <map:transform src="portal/styles/buildlogin.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 </map:transform>
 <map:transform type="sql">
 <map:parameter name="use-connection" value="portal"/>
 </map:transform>

Do not copy this fragment into the sitemap, because it is incomplete. We provide the
complete pipeline at the end of this section. Looking at this fragment from top to bottom,
you can see that the file generator first reads in the simple login.xml file. Next, the
stylesheet that builds the database select is processed. Here you use the ability to pass
request parameters to the processing step. Next in line is the sql transformer that actually
performs the select against the database and returns the user information if successful.
The configured database connection “portal” is provided as a parameter to the
transformer.

That completes the authentication step. Notice that we have not taken into account that
the authentication might fail—other than the portal page’s remaining empty when
presented to the user. This is something you can add when the example is complete.

The next step in this pipeline is to create the select statements for the database table
containing the configured feeds for the authenticated user. As in the previous step, you
will use another stylesheet that does this for you (see Listing 7.9).

Listing 7.9 A Stylesheet to Generate the News Feeds select Statement

<?xml version="1.0"?>

 207

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:sql="http://apache.org/cocoon/SQL/2.0">

<xsl:template match="user">

 <user>
 <name>
 <xsl:value-of select="sql:rowset/sql:row/sql:id"/>
 </name>
 <background>
 <xsl:value-of select="sql:rowset/sql:row/sql:color"/>
 </background>
 <feeds>
 <execute-query xmlns="http://apache.org/cocoon/SQL/2.0">
 <query>SELECT newsfeed from MOREOVER_TABLE where name

='<xsl:value-of
select="sql:rowset/sql:row/sql:id"/>'</query>
 </execute-query>
 </feeds>
 </user>

</xsl:template>

</xsl:stylesheet>

Save this file as buildfeeds.xsl in the portal/styles directory.

This stylesheet is similar to the preceding one, so there is not much to explain here. You
need to use the retrieved customer data to build the select statements. You also need to
pass on the <name> and <color> information you received in the preceding step. One
important thing to point out is the fact that you need to append the sql: namespace prefix
when accessing data you received in a previous SQL select.

As soon as you have the select statement set up, you need to use the sql transformer to
retrieve the data. Listing 7.10 shows the pipeline fragment that you need for these two
steps.

Listing 7.10 A Pipeline Fragment

<map:transform src="portal/styles/buildfeeds.xsl"/>
<map:transform type="sql">
 <map:parameter name="use-connection" value="portal"/>
</map:transform>

The result of this step should be the configured news feeds for the user. Now you can use
these feeds to build the information you need to access Moreover.com.

In previous chapters, we talked about how Cocoon allows different pipelines to be
aggregated. In this chapter, you will do this differently—by using the cinclude
transformer. You can read more about this transformer in Appendix A, “Cocoon

 208

Components,” and in the documentation provided on the CD. For now, let’s look at the
stylesheet that builds the statements for the transformer. It’s shown in Listing 7.11.

Listing 7.11 The Stylesheet That Builds Statements for the cinclude Transformer

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sql="http://apache.org/cocoon/SQL/2.0"

xmlns:cinclude="http://apache.org/cocoon/
include/1.0">

<xsl:template match="user">

 <user>
 <name>
 <xsl:value-of select="name"/>
 </name>
 <background>
 <xsl:value-of select="background"/>
 </background>

 <feeds>
 <xsl:apply-templates

select="feeds/sql:rowset/sql:row/sql:newsfeed"/>
 </feeds>
 </user>

</xsl:template>

<xsl:template match="sql:newsfeed">
 <cinclude:include

src="http://p.moreover.com/cgi-local/page?index_{.}+rss"
element="{.}"/>
</xsl:template>

</xsl:stylesheet>

Save this file as buildincludes.xsl in the portal/styles directory.

Again, this stylesheet is pretty simple, so we will concentrate on the new parts.
Generating statements for the cinclude transformer is easy. All you need to do is create
<cinclude:include> tags that have the appropriate URI as the src parameter. The
transformer then accesses the URIs and returns the received XML to the pipeline. Notice
how we have used the element attribute, with a value of the current feed, as a way of
marking where the different feeds are to be inserted into the XML data.

Obviously you also need the transformer to do the work, so Listing 7.12 shows the
pipeline snippet that covers these two steps.

Listing 7.12 A Pipeline Fragment

<map:transform src="portal/styles/buildincludes.xsl"/>

 209

<map:transform type="cinclude"/>

You should now have a complete XML definition for the portal page. Included in the
XML data are the user’s ID, the chosen color, and the different feeds fetched from
Moreover.com. This means that you are nearly finished! All you need now is a stylesheet
that formats the XML into HTML.

But wait. Didn’t we say that this was the extended version of the portal? Just adding a
stylesheet to the pipeline would be far too simple. Let’s use the browser selector to
choose a different stylesheet, depending on whether the user is surfing the Web with
Microsoft Internet Explorer or Netscape. First you need a stylesheet that will format the
XML for you (see Listing 7.13).

Listing 7.13 The Stylesheet That Formats the Portal XML into HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="*|/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()|@*"><xsl:value-of select="."/></xsl:template>

<xsl:template match="user">
 <html>
 <body bgcolor="{background}">
 <center>
 <h1>Welcome <xsl:value-of select="name"/></h1><p/>
 <small>Edit feeds</small>
 <xsl:apply-templates select="feeds"/>
 </center>
 </body>
 </html>
</xsl:template>

<xsl:template match="rss">
 <hr/>
 <table><font face="Arial, Helvetica,

sans-serif"><tr><th><xsl:value-of
 select="channel/title"/></th></tr>
 <xsl:apply-templates select ="channel/item"/>

 </table>
</xsl:template>

<xsl:template match="item">
 <xsl:if test="position() < 6">
 <tr bgcolor="#ffffff">
 <td>
 <xsl:value-of

select="title"/></
font>

 <xsl:value-of

select="description"/></
font>

 210

 </td>
 </tr>
 <tr bgcolor="#ffffff"><td bgcolor="#ffffff" height="5"></td></tr>
 </xsl:if>
</xsl:template>

</xsl:stylesheet>

Save this file as portal_html.xsl in the portal/styles directory.

Notice how you are reusing the stylesheet you wrote for the first portal version. The
difference is that you are calling the template several times, depending on the number of
feeds. You have also added a link that takes the user to a form where the configured feeds
can be edited. You’ll read more about this in a moment. The stylesheet also personalizes
the color of the HTML, depending on the user’s configured parameter.

As we mentioned, you will use the browser selector to select a different stylesheet for
Netscape. Just save this stylesheet as portal_ns_html.xsl in the same styles directory.
Now you can alter the stylesheet to perhaps use different colors for the fonts or
something similar. We leave that exercise up to you.

Now that you have completed all the necessary stylesheets, it is time to present the
complete pipeline (see Listing 7.14).

Listing 7.14 The Complete Pipeline

<map:pipeline>
 <map:match pattern="portal/user/login">
 <map:generate src="portal/resources/login.xml"/>
 <map:transform src="portal/styles/buildlogin.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 </map:transform>
 <map:transform type="sql">
 <map:parameter name="use-connection" value="portal"/>
 </map:transform>
 <map:transform src="portal/styles/buildfeeds.xsl"/>
 <map:transform type="sql">
 <map:parameter name="use-connection" value="portal"/>
 </map:transform>
 <map:transform src="portal/styles/buildincludes.xsl"/>
 <map:transform type="cinclude"/>
 <map:select type="browser">
 <map:when test="explorer">
 <map:transform src="portal/styles/portal_html.xsl"/>
 </map:when>
 <map:when test="mozilla5">
 <map:transform src="portal/styles/portal_ns_html.xsl"/>
 </map:when>
 <map:otherwise>
 <map:transform src="portal/styles/portal_html.xsl"/>
 </map:otherwise>
 </map:select>
 <map:serialize type="html"/>

 211

 </map:match>
</map:pipeline>

You have added the browser selector and configured the stylesheets that format the
HTML output. This completes the pipeline for portal authentication, with the end result
being the personalized portal containing the news feeds. Perhaps now is a good time to
try out what you have done so far. Just start Cocoon and then enter the URI
http://localhost:8080/cocoon/newsportal into the browser. After logging in, you
should see your personalized portal.

Now we will move on to the pipeline that lets you edit the configured feeds.

Editing the News Feeds

Your portal would quickly become boring if you allowed the user to see only the feeds
you configured in the database setup script. Therefore, you need a way of allowing the
user to edit the news topics. Now that you have had enough practice entering pipelines
and stylesheets, let’s dive right into things.

You will be changing information in the database. You can use the sql transformer to do
this. However, Cocoon also provides some additional database components that help you.
You first need to add a few lines to the sitemap so that you can use them.

The first thing to do is to add the following two lines to the <map:actions> section of
the sitemap:

<map:action name="add-feed"

src="org.apache.cocoon.acting.DatabaseAddAction"/>
<map:action name="del-feed"

src="org.apache.cocoon.acting.DatabaseDeleteAction"/>

These entries configure DatabaseAddAction and DatabaseDeleteAction so that you
can use them under the names add-feed and del-feed, respectively. Next you will
create an action-set. You need to add the following lines to the <map:action-sets>
section of the sitemap:

<map:action-set name="portal">
 <map:act type="add-feed" action="Add"/>
 <map:act type="del-feed" action="Delete"/>
</map:action-set>

This creates an action-set named “portal” that you can use in a pipeline. The different
actions in the set are triggered by a parameter sent from the form the user has edited.

 212

Because the action-set is triggered only if this parameter is sent from the browser, you
can use just one pipeline both to present the information for the user to edit and to
actually change the information in the database.

Let’s look at the first part of the pipeline, shown in Listing 7.15.

Listing 7.15 The Start of the Edit Pipeline

<map:match pattern="portal/user/editfeeds">
 <map:act set="portal">
 <map:parameter name="descriptor"

value="context://portal/resources/
dbfeeds.xml"/>
 </map:act>
 <map:generate src="portal/resources/editfeeds.xml"/>

First you define the match that is triggered when Cocoon receives the edit request.
Looking back at the stylesheet that generates the portal, notice that there is a link to the
edit resource:

<small>Edit feeds</small>

In addition to calling the correct pipeline, you also pass the user’s ID. You will need it
later.

The first component you use in the pipeline is the action-set you defined earlier. An
action from this set is triggered when a parameter named cocoon-action with a value of
either Add or Delete is received.

Obviously, the first time you call this pipeline (from the portal page), you do not have a
parameter named cocoon-action, so you can ignore this entry for now. You will see
what it does when you check out what happens on the server when the user wants to
delete something.

The next entry is pretty simple. You use a file generator to read the file editfeeds.xml. As
in the preceding section, this file just contains an initial tag to get everything going, as
shown in Listing 7.16.

Listing 7.16 editfeeds.xml

<?xml version="1.0"?>
<editfeeds/>

As with all the XML files in this chapter, save this file to the portal/resources directory.

The next part of the pipeline strongly resembles part of the pipeline from the preceding
section. Basically, you want to select the configured feeds from the database. To do this,

 213

you first build the select statements using a stylesheet. Then you pass them to the sql
transformer for processing. Listing 7.17 shows the pipeline snippet.

Listing 7.17 A Pipeline Fragment

<map:transform src="portal/styles/editfeeds.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
</map:transform>
<map:transform type="sql">
 <map:parameter name="use-connection" value="portal"/>
</map:transform>

The stylesheet you use to build the select statements looks like Listing 7.18.

Listing 7.18 editfeeds.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sql="http://apache.org/cocoon/SQL/2.0">

<xsl:param name="id"/>

<xsl:template match="editfeeds">
 <feeds>
 <execute-query xmlns="http://apache.org/cocoon/SQL/2.0">
 <query>SELECT id,newsfeed from MOREOVER_TABLE where name

='<xsl:value-of
select="$id"/>'</query>
 </execute-query>
 </feeds>
</xsl:template>

</xsl:stylesheet>

If you have been following along, we don’t really need to explain what’s going on here,
because you did the same thing in the second pipeline you edited. Just save this file as
editfeeds.xsl to the portal/styles directory.

The result of the select are the feeds the user is currently registered for. Therefore, the
final step in the chain is to build an HTML form that lets the user delete individual items
or add new feeds. The pipeline fragment that does this is shown in Listing 7.19.

Listing 7.19 A Pipeline Fragment

<map:transform src="portal/styles/displayfeeds.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
</map:transform>
<map:serialize type="html"/>

Something to notice here is that you pass the request parameters to the stylesheet
processing. So let’s now look at the stylesheet, shown in Listing 7.20.

 214

Listing 7.20 displayfeeds.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sql="http://apache.org/cocoon/SQL/2.0">

<xsl:param name="id"/>

<xsl:template match="feeds">
<html>
<body>
<h1>Edit</h1><p/>
<small>Choose your feed to delete</small>
 <form action="editfeeds" method="post">
 <table border="1">
 <xsl:apply-templates select="sql:rowset/sql:row"/>
 <input type="hidden" name="id" value="{$id}"/>
 <input type="hidden" name="cocoon-action" value="Delete"/>
 </table>
 <p/>
 <input type="submit" value="Submit"/>
 </form>
 <p/>
 <small>Or add a feed</small>
 <form action="editfeeds" method="post">
 <input type="hidden" name="cocoon-action" value="Add"/>
 <input type="hidden" name="id" value="{$id}"/>
 <input type="hidden" name="name" value="{$id}"/>
 <input type="text" name="newsfeed" length="20"/>
 <input type="submit" value="Submit"/>
 </form>
 <p/>
 login
</body>
</html>

</xsl:template>

<xsl:template match="sql:row">
 <tr><td><xsl:value-of select="sql:newsfeed"/></td><td><input

type="radio"
name="feedid" value="{sql:id}"/>
</td></tr>
</xsl:template>

</xsl:stylesheet>

The stylesheet contains two different HTML forms. The first part lists the feeds and
allows the user to delete individual ones. The second part lets the user add a new feed.
Notice how the form action is set to editfeeds, which is the pipeline you are currently
editing. Each form has some hidden fields—the cocoon-action we mentioned a moment
ago and a field for the user id.

 215

Next you need to look at the individual forms, because there are some differences worth
pointing out. The first form, which allows the user to delete items, generates a radio
button and entry for each news feed. Each entry in the database has a unique ID. This ID
forms the value that is ultimately sent back to Cocoon if the user chooses to delete a feed.
Then Cocoon knows exactly which news feed entry to delete from the database.

The second form contains an additional field called name that also holds the user’s ID.
The database table requires this parameter on an insert.

That completes our look at the stylesheet. So now you know that any data entered in the
form is returned to the same pipeline. Next you need to return to your action-set and
see how the actions can delete items or add new feeds. This is quite easy, really,
because they use a special XML file called dbfeeds.xml. This is a parameter passed to the
action-set if it is triggered by the cocoon-action parameter. Listing 7.21 is the file that
needs to be saved to the resources directory.

Listing 7.21 dbfeeds.xml

<?xml version="1.0"?>
<portal>
 <connection>portal</connection>
 <table name="moreover_table">
 <keys>
 <key param="feedid" dbcol="id" type="int" mode="manual"/>
 </keys>
 <values>
 <value param="name" dbcol="name" type="string"/>
 <value param="newsfeed" dbcol="newsfeed" type="string"/>
 </values>
 </table>
</portal>

This file contains a definition of the database tables that is then used by the different
actions to add items to and delete items from the news feed table. This hides the select
statements from you, so this way is slightly easier than using the sql transformer. More
information on the database actions can be found on the CD.

That completes the edit function. Listing 7.22 shows the complete pipeline that allows the
user to change the news feeds.

Listing 7.22 The Complete Pipeline That Allows Feeds to Be Altered

<map:match pattern="portal/user/editfeeds">
 <map:act set="portal">
 <map:parameter name="descriptor"

value="context://portal/resources/
dbfeeds.xml"/>
 </map:act>
 <map:generate src="portal/resources/editfeeds.xml"/>
 <map:transform src="portal/styles/editfeeds.xsl">
 <map:parameter name="use-request-parameters" value="true"/>

 216

 </map:transform>
 <map:transform type="sql">
 <map:parameter name="use-connection" value="portal"/>
 </map:transform>
 <map:transform src="portal/styles/displayfeeds.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 </map:transform>
 <map:serialize type="html"/>
</map:match>

All the files we have described in this chapter are available on the CD, so there is no need
to edit them. However, entering data into an XML editor helps you get used to the
available tools and find out which one fits your requirements best.

Closing the Portal

This completes the extended version of your news portal. In only three pipelines, you
have built a system that allows a user to be authenticated against a database and be
presented with a news portal containing his or her configured information. In addition,
the portal page is configured with the chosen color, and the list of news feeds can be
altered by deleting or adding news feeds.

Instead of moving on to the next chapter, you could look at ways of extending this
version and perhaps experiment with different components. As we have often mentioned,
Cocoon provides various ways of writing applications. Which concepts you choose
depends on the exact scenario the application has to cater to. Here are a few ideas to get
you started:

• Let the user edit the background color.
• Add a way to add and delete users.
• Use the browser selector to generate WML for mobile phones instead of the

HTML used here.
• In the authentication pipeline, use an XML file containing SQL statements instead

of generating them using the stylesheet.
• Present a list of predefined feeds for the user to choose from when adding a new

feed.
• Split the authentication and data-gathering steps into two separate pipelines.

Something else that we need to point out is that the completed portal is insecure, meaning
that this version has no concept of session management. This means that someone can
change a user’s profile without having to log on first.

Having said that, however, these deficits will be corrected when you build the next portal
version in Chapter 10, “Cocoon News Portal: Advanced Version.” Before that, however,
we will look at how you can develop additional components for Cocoon. We will also
look at some of the more advanced features the platform has to offer.

 217

Chapter 8. A Developer’s Look at the Cocoon Architecture

So far this book has looked at the Cocoon architecture from a user perspective. Many
different types of XML applications can be built using Cocoon as it is installed and with
the components provided in the standard distribution. However, Cocoon obviously does
not provide components for every data source available or for all the different types of
applications you might want to build.

One of the great advantages of Cocoon is the fact that there is no need to wait for a new
version to come out that provides a component for your particular data source. Because
Cocoon is freely available and because it is a component-based architecture, new
components can be written and integrated into the architecture easily. Cocoon can
therefore be extended to meet new challenges as they arise.

This chapter looks at the inner workings of Cocoon from a developer’s point of view. We
will lay out the foundation for developers who want to develop their own components
and who want to understand how Cocoon and the underlying architectures work.

If you are more interested in actually writing components, you might want to skip to the
next chapter and then come back to this one when you need more information on why
Cocoon components need to be written the way they do. That being said, we recommend
that you read this chapter first and then move on to developing new components after you
understand the basics. Don’t worry if not all the points are clear when you reach the end
of this chapter. The following chapter will help you understand how all the different
pieces fit together. Appendix A, “Cocoon Components,” and Appendix B, “Cocoon API
Specifications,” contain the information in a reference form. These are also good places
to find additional information when developing components for Cocoon.

We will be repeating some key points from other chapters of this book, such as how
Cocoon handles requests when running as a servlet. These are the points that you need to
remember when examining the Cocoon architecture from a development perspective. To
begin our tour and to see why there are quite a few things we need to detail in this chapter,
look at the Cocoon architecture, shown in Figure 8.1.

Figure 8.1. The Cocoon big picture.

 218

Cocoon uses the request-response cycle for document generation. Because Cocoon can be
embedded in different environments, such as a servlet, or used from the command line,
this surrounding environment is layered on top of the core processing framework. The
requests passed to the servlet or from the command line are translated into requests that
the publishing framework can understand. Cocoon processes the request and generates a
response that is passed back to the surrounding environment. The environment transforms
this response into the appropriate format. For example, the servlet environment writes to
an HTTP stream back to the client browser, and the CLI saves the response to a file.

We will be examining how the environment works and how Cocoon and its components
actually receive the various requests. We will be covering all the Cocoon core
components and classes that can be used and that can be derived from to extend Cocoon
with new components. Because Cocoon processing is based on the SAX model, it is
important to also understand how SAX works and how it is implemented in Cocoon.

This chapter discusses various Java interfaces and classes, so a basic knowledge of Java
will help you here. In order to keep the interface descriptions as compact as possible, we
have often simplified the interfaces or classes by showing only the most important
methods. Appendix B contains a more detailed API documentation.

As you can see from Figure 8.1, and perhaps remember from what you have seen already,
many of the different components involved in request processing are embedded inside the
Avalon component management architecture and use the Avalon logging facilities.

The Avalon Component Model

Cocoon consists of many different types of components, such as generators, transformers,
and serializers. These components are managed by Avalon, a Java framework specialized

 219

for this purpose. The Avalon project is divided into several subprojects. Only the
subprojects LogKit, Excalibur, and the Avalon Framework are used in Cocoon.

The Avalon LogKit is a Java-based logging API. This logging functionality is used
throughout all Avalon-based projects and inside Cocoon. The logging configuration is
very flexible, as you will see later.

The Avalon Framework is the base of Avalon. It defines several concepts and interfaces
for component development in Java. It covers the basics of defining, configuring, and
managing software components and how to use them.

The Avalon Excalibur project is layered on top of the Avalon Framework. It implements
common reusable components and offers some component management facilities so that
you can fine-tune your installation.

Throughout Avalon and the projects that use it, you will encounter two design patterns:
Inversion of Control (IoC) and Separation of Concerns (SoC). Both patterns are very
common in object-oriented component development. Because the Avalon Framework
was defined for exactly this reason, it supports these two patterns.

From a component’s point of view, IoC means that the configuration and setup
information is provided to the component instead of the component’s having to ask for
the information. So the software that creates and uses the component is responsible for
giving all the necessary information to the component. The component is controlled and
managed from the outside.

When developing an application, you have to deal with several areas or problem domains.
Following the SoC paradigm, you need to identify these different domains and clearly
separate them into different components. Each component is then responsible for one
area or concern.

These two patterns are the basics of the Cocoon architecture. Cocoon’s software design is
highly object-oriented. Cocoon is made up of many components.

The following sections use the terms application and component to describe the various
aspects of the Avalon framework. An application is software that uses a particular
component, and a component is the piece of software that is used. To make things
slightly more complicated, a component can also use other components. Up to this
chapter, the application has been whatever solution you care to build with Cocoon, such
as a portal or publishing application. In this chapter, the application is (in most cases)
Cocoon itself.

If you write new components that are to be integrated into Cocoon, the following
information on which interfaces your component needs to implement is important. Also,
if the component you write requires access to other components, the information on how
components are managed is important.

 220

Before looking at the exact components contained in Cocoon, we need to first define
what we mean by component when it comes to Avalon.

Defining Components

The ideal way to write object-oriented software is to assemble the new application by
taking reusable pieces of software and combining them.

In Java, such a component is described using an interface and is implemented using a
class. An instance of this class is the actual usable component. Why are components
important? Well, one advantage is that they let you exchange implementations—perhaps
replacing a given component with one you wrote yourself that might be better.

Consider the XML parser used in Cocoon. Cocoon comes with the Xerces parser as the
default component for XML processing. But you could write your own XML parser and
use it in Cocoon if you wanted to.

The two implementations of the parser, your own and Xerces, will differ, of course.
Perhaps your parser is faster when processing small XML documents, but Xerces might
use less memory. So, sooner or later you will face the question of which parser
implementation you want to use. Because your own parser has some advantages, there
will be use-cases for your application in which you will want to use your version. You
therefore need a way to replace a given component with a different one, without having
to rewrite the whole application.

This is a common problem that the Avalon framework helps you with. Rather than
dealing with real components, such as the Xerces parser or your own, you define roles for
the components. You first describe the XML parser role by writing a Java interface. This
interface specifies all the functionality required from a parser. So when we talk about the
role of a component, we are actually talking about a Java interface that defines the
functionality of any component that wants to play that role.

The second thing you have to do is provide specific implementations for this role (or
interface). You could adjust your own parser to implement this interface, and you could
write a bridging implementation wrapping the Xerces parser.

Throughout your application, you only need to deal with the role of a compo-nent—not
with the implementation. Because Avalon also provides mechanisms to manage roles and
components, you can request components from it. Actually, you don’t ask Avalon
directly. You use a framework provided by Avalon to fulfill this task.

What then remains is to configure which parser you want to use for the current
application. To be more exact, you enumerate all the available roles your application
needs and configure an implementation for each role. Although we are now introducing
the configuration details for the first time, you have already implicitly seen how this
works. Most of the configuration is contained in cocoon.xconf.

 221

Avalon separates the definition of the available roles for an application and the
configuration of the implementations for each role. The set of available roles is a fixed
configuration for an application that is defined by the application developer. You will get
a closer look at this in Chapter 9, “Developing Components for Cocoon,” when you start
writing your own components. Choosing an implementation for a particular role is the
concern of the administrator who maintains the application. The role configuration in
cocoon.xconf is

<parser class="org.apache.cocoon.components.parser.JaxpParser"/>

This is the main purpose of cocoon.xconf:You can decide which implementations for a
given role you want to use. In the preceding excerpt, you specify that the JaxpParser
class should be used as the implementation for the role with the name parser.

In addition, you can configure these implementations, as you will see later. However, the
actual set of available roles is not defined in cocoon.xconf. We will provide more
information on defining roles in Chapter 9, where you write your own components.

After looking at how components are managed by Avalon, you will see how the
component life cycle is controlled and what mechanisms Avalon provides that allow a
component to be reused.

The Component Manager

An Avalon component is defined by an interface description and an implementation. For
example, a parser is described by a Java interface that specifies the services of this
parsing component. In order to use the parser inside the application, you need an
implementation that conforms to the interface and that can actually do something.

Throughout the application, whenever a component such as the parser is required, instead
of the component’s being directly instantiated, it is requested (or looked up) from a
manager. More exactly, the application requests an implementation for a particular role
from the manager. You know that you can configure which implementation is used for a
role in cocoon.xconf. But how do you access components from your application?

When Cocoon is started—as a servlet or from the command line—some Avalon
mechanisms are executed. The most important tasks they fulfill are to read cocoon.xconf
and to make the components described in the configuration available to the application
via a special object—the component manager.

The component manager is the central point for managing components. It conforms to the
interface org.apache.avalon.framework.component.ComponentManager, as shown in
Listing 8.1.

Listing 8.1 The Component Manager Interface

 222

package org.apache.avalon.framework.component;

public interface ComponentManager
{
 Component lookup(String role) throws ComponentException;

 boolean hasComponent(String role);

 void release(Component component);
}

So, if you need a component that plays a specific role, you simply look it up from the
component manager using lookup. The information required is the name of the role,
which is usually the name of the Java interface. One guideline for writing Avalon
components is to define a constant named ROLE within the interface containing the name
of the role. Because this is a generic interface where all kinds of components can be
looked up, there has to be a common object type for all components. This is not Object,
the base class of all objects in Java, but the Avalon
org.apache.Avalon.framework.components.Component class. This is a marker
interface that defines a class as an Avalon component.

Because Avalon is based on the IoC pattern, the component manager is responsible for
setting up and configuring the component. After the component has been looked up, it
can be used just as though it were directly instantiated. When the component is no longer
needed, the component manager needs to be told that you have finished using the
component. Calling the release method with the component as an argument does this.
Let’s have a look at a sample role—a Parser.

Listing 8.2 contains a simple interface for such a component. The role name is
org.apache.cocoon.components.parser.Parser. This role defines a parse method
that parses an InputSource object and sends SAX events to a ContentHandler and
LexicalHandler. If you are unfamiliar with the SAX model, don’t worry; we will
introduce it later in this chapter. If you are more familiar with Cocoon and its components,
you probably have noticed that this is not the real parser interface used in Cocoon. We
have simplified it for this example. In order to understand component management, it is
sufficient to know that special objects called ContentHandler and LexicalHandler can
accept SAX events. An InputSource represents an XML document, so the parser knows
what to parse.

Listing 8.2 The Parser Role

package org.apache.cocoon.components.parser.Parser;

public interface Parser
extends org.apache.Avalon.framework.component.Component
{
 String ROLE = "org.apache.cocoon.components.parser.Parser";

 void setContentHandler(ContentHandler contentHandler);

 223

 void setLexicalHandler(LexicalHandler lexicalHandler);

 void parse(InputSource in) throws SAXException, IOException;
}

Listing 8.3 is a simple example of looking up a component in the parser role. The
component is used to parse an XML document and is released afterwards. This is a
common pattern for using Avalon components. It is very important to release a
component after using it in order to allow other components to use the parser as well. To
do this, you need to put the invocation of the release method into the final clause of your
own code. We will provide more information on the shared usage of components later.

Listing 8.3 Using an Avalon Component

import org.apache.cocoon.components.parser.Parser;

public void parseDocument(InputSource document)
{
 // we have an instance variable called manager
 // containing the component manager
 Parser parser = (Parser) this.manager.lookup(Parser.ROLE);
 try {
 parser.setContentHandler(this);
 parser.parse(document);
 } catch (Exception ignore) {
 } finally {
 this.manager.release(parser);
 }
}

Until now we have had a one-to-one relationship between the role and the
implementation. In an application such as Cocoon, only one implementation is needed for
a role such as that of a parser. But there are other cases when several implementations for
one role might be required at the same time. Without explicitly mentioning this, we
showed you many examples in the preceding chapters. All sitemap components, such as
actions, generators, and transformers, follow this pattern exactly.

For each component type, there exists exactly one role. So there is one role called Action,
one role called Generator, and so on. Several components implement a role, such as file
generator and html generator. If you were to use the component manager to look up a
component that plays the Generator role, you would get only one component. So how are
multiple components implementing a single role handled?

Avalon has the answer: a component selector. This is a component that conforms to the
interface org.apache.avalon.framework.component.ComponentSelector. When you
look up the component for the Generator role, you don’t get a generator directly. The
component manager returns a component selector that holds all the different components
that implement the Generator role. In a way, this is similar to receiving a list of
components instead of a single component.

 224

The component selector has methods similar to those of the component manager: a
lookup method, a release method, and a hasComponent method. So after the selector is
returned from the component manager, you can look up a specific generator using the
selector. After the generator has been used, it can be released using the selector. At some
point in the application, the selector must also be released using the component manager.
This is shown in Listing 8.4.

Listing 8.4 Using an Avalon Component Selector

import org.apache.cocoon.generation.Generator;

public void getGenerator(String type)
{
 // we have an instance variable called manager
 // containing the component manager
 ComponentSelector selector =
 (ComponentSelector) this.manager.lookup(Generator.ROLE +

"Selector");
 try {
 Generator generator = (Generator) selector.lookup(type);
 try {
 // use the generator here
 } catch (Exception ignore) {
 } finally {
 this.manager.release(generator);
 }
 } finally {
 this.manager.release(selector);
 }
}

In the listing, you first get a selector for all generators. This is usually done by looking up
a component from the component manager using the role name ending in Selector.
Using this selector, you can look up a generator using its name, such as file or html.

Now you know everything you need to about requesting components from the component
manager. According to the IoC pattern, a component is managed from the outside, so the
component manager sets everything required by the component. Now let’s look at how
this works, starting with a component’s life cycle.

A Component’s Life Cycle

An Avalon component has a life cycle controlled by the component manager. At a certain
time, a new instance is created and configured by the manager. After it has been used by
the application, the manager destroys it.

So the first question that needs to be answered is when is a component created? For those
familiar with Avalon, we won’t discuss pooling and reusing instances just yet. This
information is provided later in this chapter. For the moment, we will show the simple

 225

process in which a new instance is created every time a component for a role is looked up
from the component manager.

By using the configuration, the component manager determines the role’s implementation
and instantiates a new object of this class by calling the newInstance() method on the
class object.

What follows is the component’s configuration phase. For this purpose, Avalon offers
some interfaces that a component can inherit from in order to receive the required
information. We will describe these interfaces in the order in which the component
manager tests them.

The Contextualizable Interface

The first interface tested by the component manager is the Contextualizable interface.
It offers one method called contextualize. This method is called on the component
with a Context object as the argument. Listing 8.5 provides a brief overview of the
methods of these two classes.

Listing 8.5 The Context and Contextualizable Interfaces

package org.apache.avalon.framework.context;

public interface Contextualizable
{
 void contextualize(Context context) throws ContextException;
}

public interface Context
{
 Object get(Object key) throws ContextException;
}

The context is a store for information that the application provides to the component. In
the case of Cocoon, the context contains some system information such as the name of
the current temporary directory. Because the information is stored using key-value pairs,
there must be a well-defined contract between the application providing the context and
the components that need the information contained in the context.

The Composable Interface

The most important interface is the Composable interface. If a component implements
this interface, it receives the current component manager via the compose method.
Remember that the component manager is required to look up any Avalon component. So
if you write a component that needs access to other components, you must implement the
Composable interface. See Listing 8.6.

Listing 8.6 The Composable Interface

 226

package org.apache.avalon.framework.component;

public interface Composable
{
 void compose(ComponentManager componentManager)
 throws ComponentException;
}

The implementation of the compose method is rather simple. The component usually
stores the manager in an instance variable until it is needed.

The Configurable Interface

Besides the Composable interface, there are two other important interfaces:
Configurable and Parameterizable. A component is allowed to implement only one
of them, because they have the same purpose: to give the component its configuration.
Whereas the Parameterizable interface allows the configuration via key-value pairs,
the Configurable interface allows nested XML fragments. Let’s look at a sample
component configuration from cocoon.xconf:

<xslt-processor

class="org.apache.cocoon.components.xslt.XSLTProcessorImpl">
 <parameter name="use-store" value="true"/>
 <parameter name="incremental-processing" value="false"/>
</xslt-processor>

<parser class="mypackage.parser.Parser">
 <settings>
 <use-store>true</use-store>
 </settings>
</parser>

The first component, the xslt-processor, has a configuration that consists of two
key-value pairs. The parser has a nested configuration. Whereas the first example is a
use-case for the Parameterizable interface, the second one requires the Configurable
interface shown in Listing 8.7. Using the configure method, the component gets a
Configuration object containing the whole configuration of the parser component.

Listing 8.7 The Configurable and Configuration Interfaces

package org.apache.avalon.framework.configuration;

public interface Configurable
{

 void configure(Configuration configuration)
 throws ConfigurationException;
}

public interface Configuration

 227

{
 Configuration getChild(String child);

 Configuration[] getChildren();
 Configuration[] getChildren(String name);
 String[] getAttributeNames();
 String getAttribute(String paramName) throws ConfigurationException;
 String getValue() throws ConfigurationException;
}

The Configuration object wraps the configuration of one XML element. So the object
that the component gets via the configure method points to the parser element. It is now
possible to get this element’s attributes or its child elements/Configuration objects. For
example, a call to getChild("settings") returns a new Configuration object. You
can then ask this object via getChild("use-store") for a Configuration object
pointing to the use-store element. You can ask this object for its value using the
getValue() method.

There are more methods than we have listed in Listing 8.7. You can request the value of a
Configuration object or its attributes in different type representations, such as a
Boolean or float. Appendix B contains the whole Java API. For simple key-value
configurations, it is easier to use the Parameterizable interface.

The Parameterizable Interface

The Parameterizable interface should be used whenever the configuration is flat, which
means that the configuration is built from key-value pairs. The parameterize method is
invoked with the Parameters object. Both classes are shown in Listing 8.8.

Listing 8.8 The Parameterizable Interface and the Parameters Class

package org.apache.avalon.framework.parameters;

public interface Parameterizable
{
 void parameterize(Parameters parameters)
 throws ParameterException;
}

public class Parameters
{
 public String[] getNames();

 public String getParameter(final String name, final String

defaultValue);

}

 228

The Parameters object holds the configuration as key-value pairs. If you look at the
example of the Configurable description shown a moment ago, the xslt-processor gets
two parameters as a configuration.

If the xslt-processor is Parameterizable, the two values can be requested via the
getParameter() method. The first argument is the name of the parameter (use-store or
incremental-processing), and the second parameter is a default value that is used if
the parameter is not set in the configuration. Like the Configuration object, the
Parameters object has more methods than we have listed here. They too are explained in
Appendix B.

The Initializable Interface

Some components might need an initialization phase after they are configured properly
but before they can be used. This can be specified using the Initializable interface, as
shown in Listing 8.9.

Listing 8.9 The Initializable Interface

package org.apache.avalon.framework.activity;

public interface Initializable
{
 void initialize()
 throws Exception;
}

The component manager calls the initialize method. The component can then perform
all the necessary steps, such as allocating other resources and looking up other
components.

The Initializable interface is the last one the component manager tests on a
component before returning it to the calling application. Now the component can be used.
When it is not needed anymore, it should be released using the component manager.

During this release phase, again the component manager tests the component for one
interface, Disposable, to help the component perform cleanup operations.

The Disposable Interface

The Disposable interface marks the component as wanting to deallocate or release
resources before it can be destroyed. For example, if the original component looked up
another component in the initialization phase, it needs to be released at some point. The
dispose method of the Disposable interface, shown in Listing 8.10, is exactly the right
place to do this.

Listing 8.10 The Disposable Interface

 229

package org.apache.avalon.framework.activity;

public interface Disposable
{
 void dispose();
}

This interface finishes our tour through a component’s life cycle. The IoC pattern in
combination with the different interfaces a component can conform to results in a very
powerful mechanism for managing and configuring components.

This completes our discussion of the basic interfaces that a component can implement.
These interfaces allow the Avalon component manager to control and configure the
component from the outside (IoC). Next, we will look at what means Avalon provides to
make component instantiation and garbage collection as quick as possible.

Pooling Components

We have been talking about the basics of the Avalon framework, especially the
management of components. Each time you look up a component, a new instance is
created. This instance is destroyed when you release the component using the manager.

When you write components in Java, at least two significant areas can decrease your Web
application’s performance—object creation and garbage collection. A compo-nent-based
architecture such as Cocoon has many lookups and releases. A Web application’s
performance would be drastically affected if each lookup of a component resulted in the
instantiation of a new object and each disposal resulted in the object’s being
garbage-collected.

Avalon offers ways of writing more-sophisticated components with respect to object
creation. The mechanisms we have described so far are suitable for components that can
be used only once, and where it is necessary to create new instances each time the
component is requested. This is standard component manager behavior. You can
explicitly tell the component manager to manage the components in this way by making
your components conform to the SingleThreaded interface, shown in Listing 8.11. As
you can see, SingleThreaded is a marker interface, which means that it does not have
any methods associated with it.

Listing 8.11 The SingleThreaded and ThreadSafe Interfaces

package org.apache.avalon.framework.thread;

public interface ThreadSafe
{
}

package org.apache.avalon.framework.thread;

 230

public interface SingleThreaded
{
}

The opposite of this behavior is when a component is instantiated only once during the
first lookup. It is never destroyed when it is released. Each time the corresponding role is
looked up again, this exact instance is returned again. This minimizes object creation and
garbage collection. This behavior can be achieved for a component by implementing the
ThreadSafe marker interface.

Although you actually implement the singleton design pattern by conforming to the
ThreadSafe interface, the intention behind the definition of ThreadSafe and
SingleThreaded is slightly different: As the names imply, it has to do with
multithread-ing. The singleton pattern describes a component type that has exactly one
instance in the whole application. So a lookup of such a component always delivers
exactly the same object.

As a servlet, Cocoon runs in a multithreaded environment. This means that several tasks
are running concurrently. It is possible that they execute the same commands. For
example, if two requests are processed simultaneously, both might need the file generator.
So both look up the same Avalon component and act with the generator at the same time.
If both tasks look up the same instance, this instance needs to be thread-safe. So this is
the reason for the name of the interface ThreadSafe.

In contrast, a single-threaded component is not thread-safe. This means that if two
threads need a component for the same role, they must receive different instances.

However, there is a compromise between the fastest solution’s being thread-safe and the
worst one’s being single-threaded. You can create single-threaded components that are
recycled. This means that when two threads need a component for the same role at the
same time, they get a different instance. But after these instances are released, they are
not destroyed, but pooled. The next time a component for this role is looked up, these
instances are retrieved from the pool and are served by the component manager.

This pooling of components avoids not only the heavy costs of extra object creation and
garbage collection but also the extra costs of component initialization and configuration.
To allow the component manager to pool components, the component must conform to
the Poolable marker interface, shown in Listing 8.12.

Listing 8.12 The Poolable and Recyclable Interfaces

package org.apache.avalon.excalibur.pool;

public interface Poolable
{
}

public interface Recyclable

 231

 extends Poolable
{
 void recycle();
}

If a component conforms to this marker protocol, the life cycle interfaces for initialization
(Loggable, Contextualizable, Composable, Configurable, and Parameterizable)
are evaluated only when the component is instantiated. For each subsequent lookup, this
component is already properly initialized and configured, so there is no need to do this
again.

If the poolable component allocates resources during its usage, it must deallocate them
after it is used. Because the component is never destroyed, the Disposable interface
cannot be used for this purpose. But the component can conform to the Recyclable
interface, also shown in Listing 8.12. When the component is released, the component
manager calls the recycle() method, and the component can clean up and deallocate all
resources.

Because it is very difficult to write thread-safe components, the poolable and recyclable
components are the ones used most often. It is always the best solution if you can make
your component thread-safe. If that is not possible, you should at least make it poolable
or recyclable. Only if it is not possible to reuse your component should you declare it
single-threaded. However, if none of the life cycle interfaces are used with a component,
Avalon automatically treats it as a single-threaded component. This can lead to many
unnecessary object creations and garbage collections. However, because we will show
you how to write components that do implement the correct interfaces, this will not be a
common problem.

Now you have the basics of Avalon components. One common need when writing
components or applications is debugging. A helpful tool for debugging is using log
messages throughout the components. So we will turn to another area of the Avalon
framework used in Cocoon: logging.

Logging with the LogKit

The Avalon project consists of several subprojects. One of them is the Avalon LogKit. It
provides an easy-to-use and powerful logging framework that can be configured and
extended to meet nearly every need. We showed you some of the configuration
possibilities in Chapter 6, “A User’s Look at the Cocoon Architecture.”You might want
to have a quick look at that section, “LogKit Configuration,” before we continue. There’s
no hurry. We’ll still be here when you get back.

Because the LogKit is quite complex, we will stick to explaining how to use the
framework in an application. As with Cocoon, the Avalon logging framework can be
extended with additional components. For more information on extending the LogKit,

 232

refer to Appendix B, which discusses the Java API and the LogKit web site. You can find
a list of relevant Internet links in Appendix C, “Links on the Web.”

One of the advantages of the LogKit, from an application’s point of view, is that it
doesn’t have to worry about the question of where the log messages will be logged. The
framework takes care of this. The messages only need to be logged with a specific log
level, and that’s it. In order to log something, you need a logger. The most common
methods of the Logger class are shown in Listing 8.13.

Listing 8.13 The Logger Class

package org.apache.log;

public class Logger
{
 public final boolean isDebugEnabled();
 public final void debug(final String message, final Throwable

throwable);
 public final void debug(final String message);

 public final boolean isInfoEnabled();
 public final void info(final String message, final Throwable throwable);
 public final void info(final String message);

 public final boolean isWarnEnabled();
 public final void warn(final String message, final Throwable throwable);
 public final void warn(final String message);

 public final boolean isErrorEnabled();
 public final void error(final String message, final Throwable

throwable);
 public final void error(final String message);

 public final boolean isFatalErrorEnabled();
 public final void fatalError(final String message, final Throwable

throwable);
 public final void fatalError(final String message);
}

For each different log level, there is a method that allows the application to test whether
that particular level is currently enabled. In addition, there are two methods for actually
logging the message with the chosen level. The first one takes a text message as input,
and the second logs a text message together with an exception.

For example, if you want to log a message with the level “warn,” you can simply call
warn("This is a warning") on the Logger object. This method then logs the message if
the log level is set to “warn,” “info,” or “debug.” The logger then checks implicitly to see
if the log level is enabled. It does not log the message if it is disabled.

So there is no need to call the isWarnEnabled method beforehand, except for
performance reasons. Imagine a call such as warn("Parameters: " + p1 + ", " + p2 +

 233

", " + p3). Even if the warn level is not enabled, the string concatenation takes place. If
p1, p2, and p3 are complex objects that perform heavy tasks to provide their string
representation, this could take a long time. So it’s best to always test the log level before
logging—for performance reasons.

So, using the LogKit, logging is really very simple. For a component developer, the most
difficult part is deciding where to log what information and at which log level.
Unfortunately, it is up to the developer to make these decisions. A good rule of thumb is
to log as much as possible at the debug level, such as when a method is entered and when
it returns. This helps you find bugs or problems with your own component.

Another rule of development is that errors always occur where there is no logging. The
reason for this is that if you decide to log a particular action, you probably will be sure to
code that part correctly. However, if you forget to add logging, you might neglect to code
that part correctly as well.

As we detail in Chapter 11, “Designing Cocoon Applications,” it is especially important
to log when you pass control to other systems (such as when your component accesses
information from another system). Logging when control leaves your system and when it
returns helps you find bottlenecks. Also log the data received, because it might not be in
the format you expected.

There is only one problem left to solve: How do you get a Logger object? If your
component implements the Loggable interface, shown in Listing 8.14, the component
manager automatically gives you the Logger object just after the constructor is invoked
and before Avalon’s life cycle interfaces are tested.

Listing 8.14 The Loggable Interface

package org.apache.avalon.framework.logger;

public interface Loggable
{
 void setLogger(org.apache.log.Logger logger);
}

For convenience, Avalon provides the org.apache.avalon.framework.logger.
AbstractLoggable class from which your component can inherit. This abstract class
implements the Loggable interface and provides a getLogger() method returning the
logger.

We have now finished our tour through the basics of the Avalon framework. You know
about the component life cycle, and you know how to use the logging facilities. Because
this is important information, we will now recap the points learned so far.

 234

The Whole Story about Component Handling

We have explored many details of the Avalon framework that are important when you
write your own Avalon components. Let’s now summarize this before we take the big
step and explore SAX and then the core of Cocoon.

Avalon follows the IoC pattern. This means that components are configured and
initialized from the “outside.” The component manager is the heart of Avalon. It can be
used to look up and release components for a given role.

If a component is looked up, the component manager tests the component for several
interfaces in order to initialize and configure the component. The configuration of a
component takes place in cocoon.xconf.

When a component is released, the component manager tests the component for several
interfaces so that the component can perform housekeeping duties.

For improved performance, components can be declared thread-safe or poolable.
Different threads can use thread-safe components at the same time. Poolable components
are recycled for reuse.

All components use the Avalon LogKit for logging. If a component implements a special
interface, it automatically gets a logger component, which can be used to log messages
with different log levels.

Now you know how to deal with Avalon components, how they are managed, and how to
log messages. Components used in a Cocoon pipeline, such as transformers, do all this,
so this is important stuff when you build your own components. However, something else
you need to understand in order to build a transformer is how SAX events flow from one
component to the next.

SAX Event Handling

The most striking difference between the previous versions of Cocoon and the current
release (included on the companion CD) is the XML processing. It has shifted from the
memory-consuming DOM model to the event-based SAX model. Whereas the DOM
model creates Java objects in main memory that represent the XML document, the SAX
model is event-based.

The SAX model consists of a set of interfaces and classes. We will not present every
detail of the SAX model, because that would make this book quite heavy. Instead, we
will focus on the essential parts.

The most important part of SAX is the set of events sent by the XML parser to a
component that is “listening” for them. This component can then decide what to do by

 235

acting on the incoming events. So you have two objects interacting with one another: one
that sends the SAX events, and one that receives them.

The usual situation is when a parser parses an XML document and sends the data to a
receiving component. In the discussion of looking up components from the component
manager at the beginning of this chapter, we introduced the Parser role. This parser uses
some SAX interfaces. Let’s have a look at this role again (this is not the complete
interface used in Cocoon; it’s an abbreviated version):

package org.apache.cocoon.components.parser.Parser;

import java.io.IOException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.ext.LexicalHandler;

public interface Parser
extends org.apache.Avalon.framework.component.Component
{

 String ROLE = "org.apache.cocoon.components.parser.Parser";

 void setContentHandler(ContentHandler contentHandler);

 void setLexicalHandler(LexicalHandler lexicalHandler);

 void parse(InputSource in) throws SAXException, IOException;
}

The parser parses an XML document described by the class org.xml.sax. InputSource.
This class wraps a stream of bytes or characters that can be read using the usual Java IO
classes. Using this stream, the parser reads the XML document and generates SAX events.
These events are sent to an object previously set with the setContentHandler() method.
The ContentHandler interface describes the set of events sent by the parser.

Although the common terminology is “sending SAX events,” this is not precisely what
happens when it comes to Java. This sending of events is actually implemented by
invoking methods. The parser invokes a method on the content handler in order to signal
the event. The content handler consumes this event by implementing the method. When
the method returns, the parser can send the next event (it can invoke the next method).

The methods of the ContentHandler interface that are used the most are shown in
Listing 8.15. The most important events are the start and end of the document, the start
and end of elements, and character data. To find out about the start and end of the
document, the content handler must implement the startDocument and endDocument
methods. These are the first and the last methods invoked by the parser. The start

 236

document event can be used to initialize the content handler, and the end document event
indicates that the whole document has been parsed.

Listing 8.15 The ContentHandler Interface

package org.xml.sax;

 public interface ContentHandler
{
 public void startDocument () throws SAXException;
 public void endDocument() throws SAXException;

 public void startElement (String namespaceURI, String localName,
 String qName, Attributes atts)
 throws SAXException;
 public void endElement (String namespaceURI, String localName,
 String qName)
 throws SAXException;

 public void characters (char ch[], int start, int length)
 throws SAXException;
}

In general, an XML document is assembled from three different constructs: elements,
attributes, and characters. These types are honored by different SAX events. An element
always consists of an opening tag and a closing tag. Even if you choose the abbreviated
syntax, such as <tag/>, or if the element has no children, this is interpreted as
<tag></tag>. The XML parser signals the opening and closing of an element with an
individual event.

The start element event signals the opening of an element. It is indicated by calling the
startElement method on the content handler. This method has four parameters. The first
one is the element’s namespace URI, such as http://mynamespace.com or null if the
element does not have a namespace. The second argument is the element’s local name.
The third argument is the raw name, which means that it is exactly like the element is
written in the XML document. For example, if you use namespaces with prefixes, such as
<myprefix:thetag>, the local name of this element is thetag and the raw name is
myprefix:thetag. So it is always best to check the namespace URI and the local name
to test for a specific element. The fourth argument of the start element event is an
Attributes object that contains an element’s attributes and provides methods to get all
the attribute names and their individual values.

The end element event is indicated by invoking the method endElement, which has three
arguments. These three arguments are exactly the same as the first three arguments of the
start element event. Because the attributes are defined with an element’s opening tag,
they are not sent again with the end element event.

 237

Finally, regular character data is handled by calling the characters method. It has three
parameters. The first one is a character array, and the remaining two indicate from which
position and up to which position in this array the character data can be found. Note that
the parser is free to chunk the character data any way it wants, so you cannot count on all
of the character data content of an element’s arriving in a single characters event. It is
therefore necessary to concatenate the characters received by continuous characters
events.

The content handler interface provides some more methods that are invoked due to the
corresponding SAX events, but they are very rarely needed. In addition, the SAX model
offers a second interface called org.xml.sax.ext.LexicalHandler, which a
component can conform to. If the XML parser gets such a component, it creates even
more events, such as reporting DTDs. For more information, we suggest that you visit the
SAX home page. Its link is http://www.saxproject.org/.

Let’s summarize what we have just covered by going through a simple example. We will
look at an XML document and some of the SAX events generated by the parser for it.
Here is the document:

<?xml version="1.0"?>
<page title="mypage">
 <paragraph>
 <text>Hello</text>
 </paragraph>
 <footer/>
</page>

The following listing shows the most important SAX events. Everything starts with the
start document event, followed by the events for each opening tag of an element, the
events for closing the tags, and the character events.

Start Document
Start Element: page with attribute title
Start Element: paragraph
Start Element: text
Characters : Hello
End Element : text
End Element : paragraph
Start Element: footer
End Element : footer
End Element : page
End Document

We explained the SAX model by using a parser as the component that generates the
events. But more generally speaking, not only parsers can generate SAX events, but also
other components. If a component has a content handler, it can simply invoke the
startDocument method, the startElement method, and so on by hand. This creates an

http://www.saxproject.org/

 238

XML document (or the SAX events for this document) by invoking methods in a distinct
order.

Furthermore, Cocoon uses real pipelines for XML processing. This means that more than
two components are interacting. One component, called XMLProducer, generates SAX
events for a whole XML document. This can be either a parser or a component that
directly invokes the methods. The producer sends the SAX events to a component called
XMLConsumer. Both interfaces are shown in Listing 8.16.

Listing 8.16 The XMLProducer and XMLConsumer Interfaces

package org.apache.cocoon.xml;

import org.xml.sax.ContentHandler;
import org.xml.sax.ext.LexicalHandler;

public interface XMLProducer {

 void setConsumer(XMLConsumer consumer);

}

public interface XMLConsumer
extends ContentHandler, LexicalHandler {
}

public interface XMLPipe
extends XMLConsumer, XMLProducer {
}

XMLConsumer is a combination of the ContentHandler and LexicalHandler interfaces
discussed earlier. This makes an XML consumer a component that can understand all
possible SAX events. XMLProducer has only one method—setConsumer. Invoking this
method sets the XML consumer for the producer. When the XML producer starts sending
the SAX events, all these events are sent to the consumer.

If the XML consumer is also an XML producer, we speak of an XMLPipe. The interface is
also shown in Listing 8.16. An XML pipe is a component that can receive SAX events
and also send them on to another XML consumer.

In Cocoon we define the XML pipelines in the sitemap by specifying a generator, one or
more transformers, and a serializer. Implemented in Java with the interfaces we have just
explored, this means that the generator is an XML producer, a transformer is an XML
pipe, and the serializer is an XML consumer. As you will see later in this chapter, there
are some more methods that make a component a generator, a transformer, or a serializer.

With the introduction of the basic XML pipeline components and the description of SAX
handling, we have finished the explanation of the required models. In itself, this

 239

information might be enough for you to start writing a new transformer, but you also
need to understand the environment these components exist in. You need to look at the
internals of Cocoon and, for example, find out which part is responsible for processing
the request and how pipelines are built.

Cocoon Internals

Referring back to Figure 8.1, we will now explore the Cocoon architecture from the top
down. We will start with the core processing engine and move to the various components
that are needed during processing.

The most important component is the Cocoon Processor. This component is the gateway
to Cocoon. The processor encapsulates the whole Cocoon processing framework. It
generates a document triggered by a request. So this is the processing of the usual
request-response cycle.

As you can see from the interface shown in Listing 8.17, the method process has only
one argument: an Environment object. This environment describes a single request and
abstracts from the context Cocoon is currently running in. As you will see later, the
Environment object is the interface between the outside world and Cocoon—or, more
precisely, between the servlet or the command-line interface and Cocoon.

Listing 8.17 The Processor Interface

package org.apache.cocoon;

import org.apache.cocoon.environment.Environment;

public interface Processor {

 String ROLE = "org.apache.cocoon.Processor";

 boolean process(Environment environment)
 throws Exception;
}

The environment in which Cocoon is embedded is responsible for bootstrapping the
system. This includes creating a component manager, reading cocoon.xconf, and
providing a processor component. If you are using Cocoon in a supported environment,
such as a servlet engine or from the command line, you really don’t have to worry about
these tasks. And you don’t have to worry about creating an Environment object and
calling the process method yourself. These tasks are already implemented by the
different environments, but taking a look at these objects will help you understand what
happens when a request is sent to Cocoon.

When a Cocoon process is triggered by the surrounding environment, such as an
incoming request’s being routed to the Cocoon servlet running in the servlet engine, an
environment object is created and is passed on to the processor. The Environment object

 240

gives the Cocoon processor all the information that is needed to process the request. The
most important methods of the environment are shown in Listing 8.18.

Listing 8.18 The Environment Interface

public interface Environment
{

 void setContentType(String mimeType);
 void setContentLength(int length);
 void setStatus(int statusCode);
 OutputStream getOutputStream() throws IOException;
 Map getObjectModel();

}

The most important method of the Environment object is the getObjectModel method.
It returns a map containing key-value pairs. This object model is passed to nearly every
sitemap component. It contains at least two important objects: Request and Response.
The Request object describes the current request by giving information about what URI
is requested, which parameters are used, the client’s user-agent, and so on. The Response
object is the counterpart of the Request object: It describes the response. Listing 8.19
contains some important methods of these interfaces.

Listing 8.19 The Request and Response Interfaces

package org.apache.cocoon.environment;

public interface Request
{
 // get information about the requested URI
 String getSitemapURI();
 String getProtocol();
 String getScheme();
 String getServerName();
 int getServerPort();

 // get parameters
 String getParameter(String name);
 Enumeration getParameterNames();
 String[] getParameterValues(String name);

 // get headers
 String getHeader(String name);
 Enumeration getHeaderNames();

 // attributes for exchanging information
 Object getAttribute(String name);
 Enumeration getAttributeNames();
 void setAttribute(String name, Object o);

}
public interface Response

 241

{
 // add headers
 void setHeader(String name, String value);
 void addHeader(String name, String value);
}

As the object model is passed to most components inside Cocoon, all these components
have access to the Request and Response objects. The class org.apache.cocoon.
environment.ObjectModelHelper defines some constants for the keys to use with the
object model: REQUEST_OBJECT and RESPONSE_OBJECT. So if you have the object model,
you can retrieve the request object by a call of

get(ObjectModelHelper.REQUEST_OBJECT). The call to get the Response object is
similar. The ObjectModelHelper class also provides two static methods, getRequest()
and getResponse(), which take the object model as a parameter. They return the
corresponding object from the object model. We advise using these two methods instead
of using the key directly to get the request or response.

If you are familiar with the servlet API, you will have noticed that these two objects are
very similar to the HttpServletRequest and HttpServletResponse objects. In fact, the
Request and Response objects are modeled using the servlet variants as a base. But there
is one important difference for security reasons: Except for setting headers, it is not
possible to change anything in the response directly. It is not possible to get the output
stream the response is written to. Nor is it possible to set the mime type or the length of
the response.

Now that we have examined the classes and interfaces that make up the gateway into
Cocoon, it is time to take a detailed look at how the sitemap processing takes place when
a request is received. Up to now you have seen a pipeline represented as XML tags in the
sitemap. Now you will see which objects actually do the work behind the scenes.

Processing the Sitemap

When the processor is invoked to process an environment object, nearly all the
components needed from this point on are looked up from a component manager instead
of being directly instantiated. This makes the whole architecture very flexible and
improves the performance, because most components are either thread-safe or poolable.

The processor now needs the sitemap in order to be able to execute the request. Each
sitemap—the main sitemap and the possible subsitemaps—is handled by a sitemap
manager. Each sitemap has its own manager component. The processor looks up the
sitemap manager component for the main sitemap and passes the Environment object to
the manager, so the processing is passed from the processor to the sitemap manager.

The main task of the sitemap manager is to manage a sitemap component. This
component is the real object representation of sitemap.xmap or any subsitemap. After the
manager has access to this sitemap component, it passes the environment object to the

 242

sitemap object. So again, the task of processing the request has moved on to another
object. The sitemap object then extracts the necessary information and processes the
pipelines section from top to bottom (this process is discussed in Chapters 4 and 6).

The processing of the sitemap results in the lookup of even more components. The first
thing the sitemap object does is create pipeline objects that describe the current request.
The StreamPipeline is a pipeline object that describes the whole document-creation
process. It is initialized by the sitemap object with the required information or
components to create the document.

The Stream Pipeline

The stream pipeline outputs its result into a byte stream, which is provided by the
Environment object. The servlet environment passes the byte stream back to the client,
and the CLI writes the file on the hard drive using this stream.

A stream pipeline itself does not create any output. It manages other components that
actually do the work. Depending on the pipeline definition in the sitemap, a stream
pipeline can consist of either a sole Reader or an EventPipeline in combination with a
Serializer. We will examine these two different types in a moment.

The more general stream pipeline, which can be thought of as a wrapper around one of
the two types just mentioned, has nothing to do with XML. It simply outputs a byte
stream. This can be either a binary file, an image, or the text of an HTML page. The
event pipeline, in contrast, is a SAX-only XML processing pipeline. This means that the
output of this pipeline consists of SAX events. This is the reason that a serializer is then
needed to serialize the events back into a byte stream.

When the processing of the sitemap starts as described in Chapter 6, the pipelines section
of the sitemap is executed top-down. Whenever an element is reached, an action is
executed in the sitemap object.

For example, if a <map:match pattern="helloworld"/> is reached, the default matcher
is looked up. It is initialized with the current object model and the pattern that is to be
tested. The result of calling this matcher influences the flow through the sitemap.

During the processing of the sitemap, several other components are also created and used:
Matchers, Selectors, Actions, Generators, Transformers, Serializers, and
Readers. When we explained the flow through the sitemap in Chapters 4 and 6, we
showed that matchers, selectors, and actions are processed immediately. All other
component types are assembled to build the event pipeline. This fact is reflected in the
different handling of these components. Whereas matchers, selectors, and actions are
looked up, executed, and released each time a corresponding statement is found in the
sitemap; generators, transformers, serializers, and readers aren’t looked up at this stage.
Instead, only the name of the component to be used is passed on to either the stream

 243

pipeline or event pipeline. This information passed on to the pipeline objects is used later
by the pipeline objects to build the real processing pipeline.

After the stream pipeline and event pipeline (if required) have all the information needed
to process the request, the stream pipeline is executed. Calling the process method of the
stream pipeline starts this. This method receives only the environment as an argument, so
the processing of the request is moved from the sitemap manager object to the stream
pipeline object.

Now that you have seen a general overview of how the processing takes place, let’s look
at the different pipeline types in more detail.

The Reader Component

A stream pipeline can consist solely of a reader. The stream pipeline knows the name of
the reader to use. It looks it up using the component manager and a role selector for the
role of Reader. Listing 8.20 shows the Reader interface.

Listing 8.20 The Reader Interface

package org.apache.cocoon.reading;

import org.apache.avalon.framework.component.Component;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment.SourceResolver;
import org.xml.sax.SAXException;

import java.io.IOException;
import java.util.Map;
import org.apache.cocoon.ProcessingException;
import org.xml.sax.SAXException;

import java.io.IOException;

public interface Reader
extends Component
{
 String ROLE = "org.apache.cocoon.reading.Reader";

 void setup(SourceResolver resolver, Map objectModel,
 String source, Parameters par)
 throws ProcessingException, SAXException, IOException;

 void setOutputStream(OutputStream out) throws IOException;

 void generate()
 throws IOException, SAXException, ProcessingException;

}

 244

The reader is initialized by the invocation of two methods. The first one is the setup
method. It passes all relevant information from the sitemap to the reader. The first
component, the source resolver, can be used to get data from all possible sources. We will
explore this component later in this chapter.

The object model contains the necessary information about the current request. You have
already learned that it at least contains the Request and Response objects. The third
argument, the source string, is the value of the attribute src used in the pipelines section
of the sitemap. For example, if the sitemap contains <map:read
src="helloworld.jpg"/>, the source argument contains the string "helloworld.jpg".
The fourth parameter is a Parameters object; it is the same class we saw during our tour
through Avalon. This Parameters object contains all parameters written in the sitemap
for this component, such as <map:parameter name="reader_parameter"
value="the_value"/>.

The second method invoked on the reader is the setOutputStream method. Through this
method, the reader gets access to the output stream that is later returned to the client. For
example, the resource reader can read an image from the local hard drive and write the
contents of the image to the output stream.

The function that is called on the reader interface and that then sets off the actual
processing inside a reader component is the generate method.

As you can see from this description, implementing a reader is very simple. A new reader
must implement the interface just described and, in particular, the three methods just
mentioned. However, as we mentioned at the beginning, we have not yet shown you all
the methods of the interface. The reader has some additional methods that must be
implemented. But they are really very easy to implement, as you will see in the next
chapter. Trust us.

Before you put this book aside and start implementing your own reader, please stay with
us for the remainder of this chapter. The reader is only one possibility for the processing
of the stream pipeline. It gets more complicated—and, of course, more interesting—if a
real XML processing pipeline is established.

The Event Pipeline and Serializer

The stream pipeline can also be assembled from an event pipeline and a serializer. In this
case, a SAX-based XML processing pipeline is established. Remember, this XML
processing pipeline starts with an XML producer followed by XML pipe objects and ends
with an XML consumer.

The pipeline’s end point is the serializer. The Serializer interface therefore inherits
from the XML consumer interface, as shown in Listing 8.21.

Listing 8.21 The Serializer Interface

 245

package org.apache.cocoon.serialization;

import java.io.IOException;
import java.io.OutputStream;
import org.apache.cocoon.xml.XMLConsumer;

public interface Serializer extends XMLConsumer
{

 String ROLE = "org.apache.cocoon.serialization.Serializer";

 void setOutputStream(OutputStream out) throws IOException;

}

Because the serializer is the component that creates the output returned to the client, it
gets the output stream via the setOutputStream method. The stream pipeline sets this
output stream.

The event pipeline is regarded as a single XML producer that sends SAX events to the
serializer. So the stream pipeline looks up the serializer using the component manager
and sets it as an XML consumer for the event pipeline. Then the processing of the request
is passed to the event pipeline.

The event pipeline already has the information on what generator and which transformers
to use from the sitemap object. It looks up all these components using the component
manager. First it gets the generator to use. The Generator interface is shown in Listing
8.22.

Listing 8.22 The Generator Interface

package org.apache.cocoon.generation;

import java.io.IOException;
import java.util.Map;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment,SourceResolver;
import org.apache.cocoon.xml.XMLProducer;
import org.xml.sax.SAXException;

public interface Generator extends XMLProducer
{
 String ROLE = "org.apache.cocoon.generation.Generator";

 void setup(SourceResolver resolver, Map objectModel,
 String source, Parameters par)
 throws ProcessingException, SAXException, IOException;

 void generate()
 throws IOException, SAXException, ProcessingException;
}

 246

The generator inherits from the XML producer interface. Therefore, this is the component
that really creates the SAX events as the start of the XML processing pipeline. For
example, the file generator sends the events based on the input of an XML document.

But before the SAX events are sent, the generator is initialized for the current request.
The event pipeline therefore calls the generator’s setup method. By invoking this, the
generator gets access to the current source resolver, the object model, the value of the
src attribute used in the sitemap, and the possible parameters set in the sitemap for this
generation step. This is the same as initializing a reader.

When the whole pipeline has been established, the XML processing is started by a call to
the generate method. But before this can happen, the generator needs an XML
consumer it can send the SAX events to. Therefore, the event pipeline looks up all the
transformers used for this pipeline by questioning the component manager. The
Transformer interface is shown in Listing 8.23.

Listing 8.23 The Transformer Interface

package org.apache.cocoon.transformation;

import java.io.IOException;
import java.util.Map;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment,SourceResolver;
import org.apache.cocoon.xml.XMLPipe;
import org.xml.sax.SAXException;

public interface Transformer extends XMLPipe
{
 String ROLE = "org.apache.cocoon.transformation.Transformer";

 void setup(SourceResolver resolver, Map objectModel,
 String source, Parameters par)
 throws ProcessingException, SAXException, IOException;
}

As a transformer receives SAX events—either from a generator or from a preceding
transformer—it conforms to the XML consumer interface. But a transformer also sends
events either to the serializer or to the next transformer. So it implements the XML
producer interface, too. Therefore, the Transformer interface inherits from the
XMLPipe interface, combining XML producer and XML consumer.

Like a generator, a transformer is first initialized by a call to the setup method. This
method has the same arguments as a generator: the source resolver, the object model, the
value of the src attribute used for this transformer in the sitemap, and the parameters
passed to this transformer from the sitemap.

 247

When all components have been looked up, the XML processing pipeline is assembled.
The generator gets the first transformer as the XML consumer. The first transformer gets
the second transformer as the XML consumer, and so on. The last transformer sends its
SAX events to the serializer.

Finally, the XML processing starts by invoking the generate method on the generator.
The generator follows the steps necessary to get the initial XML, such as by reading an
XML document. This document’s events are then sent to the first transformer.

The transformer—if it doesn’t change the data—passes all events unchanged to the next
component in the pipeline, such as a second transformer. This second transformer passes
the events to the next transformer or to the last component in the pipeline—the serializer.
The serializer creates the output document from the received events. You will get a closer
look at the event pipeline when you build your own components in Chapter 9.

Document generation takes place with the simple-looking call to the generate method
on the generator. As you have seen, before this generation is started, a lot of actions are
performed, and many components are looked up. Of course, when the generation process
is finished, all components are released properly.

After going through all the information on the past few pages, now is perhaps a good
time to summarize what you have learned. We will use a figure to do so.

Figure 8.2 summarizes the different steps of request processing.

Figure 8.2. Processing steps.

 248

When a request enters the surrounding environment, such as the servlet or the CLI, it is
wrapped by an Environment object. This object is passed to the core Cocoon
processor. The processor gets a sitemap manager for the root sitemap and passes the
Environment object to this component.

The manager looks up the sitemap object and passes the Environment object to this
object. The sitemap processes the sitemap and generates the stream pipeline and event
pipeline components. During the processing of the sitemap, the matchers, selectors, and
actions are looked up, executed, and released. The event pipeline gets the information on
what generator and which transformers to use later. The stream pipeline is initialized with
the name of the serializer to use.

After the processing of the sitemap is finished, the sitemap component passes the
Environment object to the stream pipeline. The stream pipeline looks up the serializer
and initializes it with the output stream provided by the Environment object. The
Environment object and the serializer are passed to the event pipeline.

The event pipeline looks up the generator and the transformers and initializes all of them.
It does not pass the Environment object or the output stream to those components. But
they all get access to the object model containing the most important information.

When the stream pipeline starts the processing by invoking the generator, the generator
sends SAX events to the transformer. Through the pipeline, the events arrive at the

 249

serializer. The serializer creates the output document by writing to the provided output
stream. After all the SAX events are executed, the processing is finished.

In the case of a reader, the picture is simpler. You can forget the event pipeline and
replace the serializer with the reader component. When the stream pipeline is invoked, it
looks up the reader and gives it the output stream. After that, the reader is executed. It
writes the data to the output stream, and the processing is also finished.

The next piece of the jigsaw we will look at is how source resolving takes place in
Cocoon.

Source Resolving

One common problem, not only present in Cocoon, is the resolving of sources. By this
we mean getting content from different sources, such as the file system, HTTP, or FTP.
Cocoon is very flexible in this way, because it can be extended with any custom protocol
not already provided by the Java Virtual Machine.

In Chapter 6, we talked about the various protocols available in Cocoon and how Cocoon
handles the source definitions used as input for the sitemap components. For example, if
you use <map:generate src="helloworld.xml"/>, this source is resolved
according to the location of the current sitemap.

As you can probably guess, source resolving is done by another component: the
SourceResolver. Unfortunately, this is not an Avalon component, so it cannot be
looked up using a component manager. But before you get too disappointed, the good
news is that the source resolver is passed to each sitemap component during the
assembling phase, as described earlier in this chapter. Listing 8.24 presents the
SourceResolver interface.

Listing 8.24 The SourceResolver Interface

package org.apache.cocoon.environment;

import org.apache.cocoon.ProcessingException;
import org.xml.sax.SAXException;

import java.io.IOException;

public interface SourceResolver
{
 Source resolve(String systemID)
 throws ProcessingException, SAXException, IOException;
}

The source resolver has only one method, resolve, which has only one argument, the
system identifier. This string is the unique definition of a source—in other words, a URI.
As you are used to, this URI can be absolute or relative. The source resolver

 250

automatically resolves this for you and returns an object conforming to the Source
interface, as shown in Listing 8.25. Be sure to resolve every URI using the source
resolver. Do not use the java.net package for URIs or the java.io classes for files. The
source resolver is a more powerful approach that makes using these packages
superfluous.

Listing 8.25 The Source Interface

package org.apache.cocoon.environment;

import java.io.IOException;
import org.apache.avalon.excalibur.pool.Recyclable ;
import org.apache.cocoon.ProcessingException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;

public interface Source extends Recyclable
{

 InputStream getInputStream()
 throws ProcessingException, IOException;

 InputSource getInputSource()
 throws ProcessingException, IOException;

 void toSAX(ContentHandler handler)
 throws SAXException, ProcessingException;
}

The Source object can be used to get an input stream from which to read the data. To
simplify XML handling, the Source object offers two methods especially for SAX
event handling. The getInputSource method returns an InputSource object that
can then be used by an XML parser to generate SAX events. The toSAX method goes
one step further: It sends the SAX events directly to a content handler.

Although the source object is not an Avalon component, it implements the
Recyclable interface. During the allocation of a Source object and during the
fetching or parsing of the data, the Source object might collect other objects that must
be carefully released. This can be done in the recycle method. So a component getting
a Source object from the source resolver must always recycle this Source object! The
usual handling of a Source object is shown in Listing 8.26.

Listing 8.26 Using a Source Object

public void sourceDemo(SourceResolver resolver,
 String URI)
{
 Source source = resolver.resolve(URI);
 try {
 source.toSAX(contentHandler);

 251

 } finally {
 if (source != null) source.recycle();
 }
}

As should be obvious from this example, source resolving with Cocoon is very simple.
The only thing you have to do is call the Resolve method on the resolver. The source
object you get is already optimized for XML processing with the SAX model. And don’t
forget to recycle it afterwards.

Writing your own component for Cocoon is not so complicated. As soon as you
understand the basic concepts, it most often comes down to simply implementing an
interface, such as the reader or transformer interface. Many common tasks are already
contained in Cocoon by special Avalon components, such as source resolving.

Enough Theory

Still with us? Good. We did warn you that this chapter might be slightly difficult to digest.
But it is important to learn how to drive before you get into a car. You can learn by just
driving off, but how many other cars will you run into on the way? It is the same with
Cocoon. In our experience, any programmer who tries to write a Cocoon component
without grasping the basic concepts first will learn the hard way. In addition, it is
important to remember that Cocoon does a lot of the work for you.

This chapter laid out the basics of developing your own Java components to use with
Cocoon. We explored the Cocoon architecture top-down, introducing the most common
objects. Nearly all objects inside Cocoon adhere to the Avalon component model, so we
started with Avalon component management and then moved on to the logging facilities
and the SAX model for XML processing.

In Chapter 9, you will use this knowledge to write some components you can use in your
Web applications. So start your Java Development Environment and continue with the
next chapter.

 252

Chapter 9. Developing Components for Cocoon

Cocoon provides a wide variety of components, such as the various transformers and
generators, that can be used to build different types of applications. As you have seen
throughout this book, these applications can range from simple web pages to quite
complex solutions such as a news portal, where data is accessed over the Internet and the
user configuration is stored in a database. However, there will be times when you need a
component that is not in the standard distribution. One of Cocoon’s great advantages is
that it can be easily extended with additional components.

One of the first Cocoon-based applications we designed required the integration of a
legacy system via a proprietary protocol. This was not provided for by the available
components in the Cocoon distribution. So, in order to still use Cocoon as the publishing
engine, we wrote our own generator that could connect to the new system. Because we
wrote a component that implemented the given Cocoon interface, we could integrate it
into Cocoon just by configuring the details in the cocoon.xconf file. So adding new
components is just a matter of configuration (after you’ve written and tested them, of
course).

By the end of this chapter, you will have developed new components that extend Cocoon
with functionality that isn’t included in the standard distribution. These components
range from the simple, such as a reader, to the more-complex, such as a transformer.
Apart from sitemap components, you will also see how to develop a new protocol for
Cocoon and how to centralize functionality in Cocoon by developing a mail component
that can be used by other components.

What Is Needed to Develop Cocoon Components

Before starting to write a particular component, you first need to answer the most
important question: What do you need in order to write your own components for Cocoon?
Well, first of all, Cocoon. You already know that, so let’s move on. Actually, you need
only one other thing: a Java Developer Kit (JDK).

Because Cocoon is based on the Java 1.2 platform, you need a developer kit that
conforms to this version. Actually, you can use either JDK version 1.2 or 1.3. JDK 1.4

 253

recently was released. Unfortunately, it doesn’t work with the version of Cocoon covered
in this book. So, if you want to use JDK 1.4, you will have to get a more recent version of
Cocoon from the Cocoon web site. You need JDK and not just the Java Runtime
Environment (JRE). You can download versions of the JDK from places such as the Sun
web site.

Theoretically, that’s all you need—that is, if you like starting the Java compiler from a
command-line interface. However, it is a lot easier to use an integrated development
environment (IDE). Regardless of whether you prefer the CLI solution or the IDE one,
you must add all the necessary Java archives (JARs) to the classpath when building new
components. When you installed Cocoon into the servlet engine, all the necessary JAR
files were copied to the WEB-INF/lib directory. Refer to your IDE user manual or to the
documentation of the command-line tools for more information on how to add all the
necessary JAR files to the classpath so that they are available to the compiler.

After you have successfully compiled a component, you need to “deploy” it. By
deploying, we mean adding your new component to the installed Cocoon servlet so that it
can be used in a pipeline. Deploying a new component in a Cocoon environment is the
same for each type of component, so we will describe the necessary steps first, before
looking at the individual components. Remember that this is not anything specific to
Cocoon, but rather the standard way of packaging Java classes for deployment. Here are
the steps:

1. Build a JAR file containing the new component(s).

2. Shut down the servlet engine.

3. Add the new JAR file to the WEB-INF/lib directory.

4. Configure the component either into the sitemap or into the cocoon.xconf.

5. Create a pipeline containing the component.

6. Start the servlet engine.

7. Test the component.

After you have set up your development environment, it’s “tool time.” But what can you
develop? There are so many possibilities with Cocoon that it is very difficult to choose.
So let’s briefly recap the types of components you can develop to extend Cocoon.

Sitemap Components

First of all, there are the sitemap components: actions, generators, transformers,
serializers, matchers, and selectors. You used these various component types when we
looked at Cocoon from the user perspective in Chapters 4 and 6. Depending on the

 254

application, you might need to write an action, generator, reader, transformer, or
sometimes maybe even a selector. But in the case of serializers and matchers, the
situation is slightly different, because Cocoon already provides common implementations.
During the work you have done with Cocoon, you have not yet had to write a serializer or
a matcher.

The component most likely to be written is the action. This type of component is ideal for
integrating functionality that might already exist.

You will start by writing a simple action. Then you will build a reader and a generator.
After that, you will increase the complexity by writing your own transformer. You will
finish with a simpler component type: your own selector. As soon as you understand the
basics of Cocoon component development, it is easy to extend your knowledge to the
component types not covered in this chapter.

But let’s first have a look at some general rules and remember some important points
from Chapter 8, “A Developer’s Look at the Cocoon Architecture.” We know this might
disappoint you, but trust us. You will benefit from the next few pages, because they set
some general guidelines for writing robust and easy-to-debug components.

General Hints

Cocoon is based on the Avalon framework and adheres to the Avalon component model.
Writing a sitemap component therefore includes writing an Avalon component. So it’s
worth repeating the different life-cycle interfaces that Avalon supports:

• Loggable: Provides a logger for the component.
• Contextualizable: Provides the context.
• Composable: Passes the component manager to the component.
• Configurable: Sets a hierarchically structured configuration.
• Parameterizable: Sets a flat configuration.
• Initializable: Initializes the component.
• Disposable: Cleans up the component.
• ThreadSafe: The component is thread-safe.
• Poolable: The component is not thread-safe but should be pooled.
• Recyclable: The same as Poolable, but the component can clean itself up

when it is returned to the pool.

See Chapter 8 for in-depth coverage of these interfaces. We recommend that you always
implement the Loggable interface so that the component receives a logger. If the
component does not need to inherit from another class, it can simply inherit from the
AbstractLoggable class that is also contained in Avalon. This abstract class
implements the Loggable interface and offers the getLogger method to get the
logger instance. If the component cannot inherit from this abstract class, it has to
implement the setLogger method of the Loggable interface itself.

 255

If the new component needs to look up other components, such as a parser, it must
implement the Composable interface. If the component requires any configuration, you
have to choose between Configurable and Parameterizable. Whenever the
components only need key-value pairs for configuration, you can use
Parameterizable. On the other hand, the Configurable interface gives you the
full power of XML-based configuration.

If the component needs any further initialization, the Initializable interface is the
way to go. To clean up when the component is destroyed, you can implement the
Disposable interface. For all these interfaces, it is advisable not to implement a
lifecycle interface if the component does not really require the functionality. This keeps
the components as small as possible and makes them perform a bit faster.

Sooner or later you will face a situation in which after you have written your complex
component, it doesn’t work the way you expect when you test it. In such a situation, you
will benefit from compact code, because this minimizes the lines of code you need to
scan for the bug.

Another technique that helps in the debugging process is using tracing or logging features.
It is a good idea if a method outputs the incoming parameters and the output result.
Because you can use the provided logger for this, an implementation for a method could
look like this:

public String getValueFor(String contextName, Object context) {
 if (this.getLogger().isDebugEnabled()) {
 this.getLogger().debug("getValueFor invoked with contextName=" +

contextName
 +"context = " + context);
 }
 String result;
 ... do whatever is needed and store it in 'result'.

 if (this.getLogger().isDebugEnabled()) {
 this.getLogger().debug("getValueFor() returns: " + result);
 }
 return result;
}

This technique helps a lot in debugging, because it is possible to have a look at the log
and see which methods were called with what parameters and what the result of the
method was. The examples in this book do not contain logging statements to keep them
as small as possible but still understandable. But the complete source code is also
contained on this book’s companion CD. That version uses the logging mechanisms we
have just described.

Another point we need to be clear about before we start is a component’s lifetime. If
possible, you should make your component thread-safe. If not, it should at least be
poolable or recyclable.

 256

For the sitemap components, Cocoon provides several abstract classes you can use to
implement your own components. Some of these abstract classes already implement
different life-cycle interfaces. They all implement at least the Loggable interface.
Some of them implement the Recyclable interface. In these cases, it is important to
not extend from any other lifetime interface, such as thread-safe. This is not allowed and
would result in an exception from the component manager when such a component were
looked up.

The problem with the Recyclable interface is that it defines a method called
recycle that your new component must implement. So if you inherit from a
Recyclable class, you have to take care of at least two things. First, you need to
implement the recycle method in the component and clean up any objects you might
have allocated. Second, you must also call the super implementation. The usual
implementation of the recycle method resets all instance variables to null to indicate
that the referenced objects can be released into garbage collection. If any of the
referenced objects were components you looked up from the component manager
yourself, these have to be released at this time.

But you must be careful not to reset any instance variables that were set by some of the
other life-cycle interfaces, such as the Contextualizable or Composable
interfaces. When a component is recycled, it is used the next time without these life-cycle
interfaces being called.

Another topic you have to deal with is exceptions. In most cases, the methods raise an
org.apache.cocoon.ProcessingException. This is a Cocoon-specific
exception that is raised whenever a problem occurs during the processing. The
ProcessingException can be used to wrap another exception. Most of the
interfaces used in Cocoon can often throw only a ProcessingException. If you
implement one of these interfaces, and if you have to deal with other exceptions inside
your implementation, you have to catch the exception and throw a
ProcessingException instead that wraps the original exception:

public void method()
throws ProcessingException {
 try {
 ... some statements eventually raising a ProcessingException, an
IOException and
 any other Exception as well
 } catch (IOException ioe) {
 throw new ProcessingException("IOException", ioe);
 } catch (ProcessingException pe){
 throw pe;
 } catch (Exception any) {
 throw new ProcessingException("Exception", any);
 }
}

 257

From this example, you can see two important things:

• If you catch an exception and raise a new one, you must never lose the original
exception. You need to pass it on with the new exception whenever possible (an
example is IOException and Exception).

• If you use a type of exception that wraps other exceptions, you need to make sure
that you do not wrap them unnecessarily again. This would be the case if the
function you call also throws a ProcessingException.

Three other kinds of exceptions are commonly used inside Cocoon:

• SAXException: Whenever something is wrong with the SAX events, this
exception is used. It is also a wrapping exception.

• IOException: Used whenever an I/O operation fails.
• ResourceNotFoundException: This is used to indicate that a source has

not been found—such as if a generator tries to read an XML document that is
unavailable.

If you look through the Cocoon source code (which is also on the CD), you will see a lot
of try/catch blocks like the one just shown. If you strictly follow the rule of wrapping the
original exception, you will always see in the top exception handler what the real cause of
the exception was. If you forget somewhere in between to include the original exception,
this important information gets lost, and it will be very hard to find the real bug or
problem.

Enough theory for now. Let’s get practical and write your own sitemap component: an
action.

Actions

What can your action do? Because an action can perform an arbitrary task, there are
really no limits. The one exception is that an action cannot directly influence the SAX
stream of the XML processing pipeline, as you saw in Chapter 8. To keep the example as
small as possible and in order to show the implementation of an action, you will develop
a simple action that produces a random number.

Your random action can be used in the sitemap to generate a random number that can be
used to form the name of a stylesheet. Each time a user requests a document, the
background color could be different. Or, if you are interested in putting banners on your
document, you can alternate between different banners by using this action.

As a starting point, we present the Action interface in Listing 9.1. The whole interface
consists of only one method—the act method. You need to add your functionality here.
This method gets several parameters: a redirector for possible redirect-ing, the source
resolver, the object model for the current request, the value of the source attribute from
the map:act statement, and the sitemap parameters from the sitemap. As explained in

 258

Chapter 8, the source resolver and the object model are two important objects. The source
resolver helps in obtaining any resource, such as an XML document, an image, and so on.
The object model describes the current request-response cycle.

Listing 9.1 The Action Interface

package org.apache.cocoon.acting;

import org.apache.avalon.framework.component.Component;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.environment.Redirector;
import org.apache.cocoon.environment.SourceResolver;

import java.util.Map;

public interface Action extends Component {

 String ROLE = "org.apache.cocoon.acting.Action";

 Map act(Redirector redirector, SourceResolver resolver,
 Map objectModel, String source, Parameters par)
 throws Exception;
}

On successful completion of the task, the action returns a Map instance that is a
collecttion of key-value pairs. Remember that if the action returns a map object, the
sitemap statements inside the map:act are executed. If the action returns null, these
are skipped. In addition, the values contained in the map can be used from other sitemap
components through value substitution if the other components know the key under
which a value is stored.

But even if an action does not provide any values for other sitemap components to use, it
should return a map object to the sitemap. This map object can simply be empty.

So, your action generates a random number and returns this number in the map using the
key “number.” When the action is used, it is possible to provide a range for the random
number by giving a minimum and a maximum value. If these ranges are not provided, the
generated number is between 0 and 100.

Cocoon already provides some abstract classes from which your little action can inherit:
AbstractAction and the ComposerAction. AbstractAction already
implements the Loggable, Configurable, and Disposable interfaces.
ComposerAction extends AbstractAction by also implementing the
Composable interface. Because your action needs neither a component manager nor a
configuration, you will not inherit from these abstract classes. Because you want a logger
for debugging, you inherit from the AbstractLoggable class. In addition, your
action is thread-safe, so you extend that interface, too. In fact, because an action consists
of only one method, there are really rare situations in which the action is not thread-safe.
Listing 9.2 shows the code.

 259

Listing 9.2 The RandomAction Class

package cxa.acting;

import org.apache.avalon.framework.activity.Initializable;
import org.apache.avalon.framework.thread.ThreadSafe;
import org.apache.avalon.framework.logger.AbstractLoggable;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.acting.Action;
import org.apache.cocoon.environment.Redirector;
import org.apache.cocoon.environment.SourceResolver;

import java.util.HashMap;
import java.util.Map;
import java.util.Random;

public class RandomAction
 extends AbstractLoggable
 implements Action, Initializable, ThreadSafe {

 protected Random generator;

 public void initialize() {
 this.generator = new Random(System.currentTimeMillis());
 }

 public Map act(Redirector redirector,
 SourceResolver resolver,
 Map objectModel,
 String src,
 Parameters parameters)
 throws Exception {
 int min = parameters.getParameterAsInteger("min", 0);
 int max = parameters.getParameterAsInteger("max", 100);

 int random = this.generator.nextInt(max - min + 1) + min;

 // build resulting map
 Map map = new HashMap(1);
 map.put("number", "" + random);
 return map;
 }
}

Listing 9.2 contains your action. As you can see from the initialize() function, it
also implements the Initializable interface. When the action is created, it gets a
java.util.Random object, which generates the random numbers.

The rest of the action consists of the implementation of the method act. The action
usually calculates random numbers between 0 and 100. By specifying two parameters,
min and max, you can override these ranges. So the first two lines evaluate any passed
parameters.

 260

The next statement generates the random number in the given range, and then the
resulting map object is created. The map contains one key called number, which points
to the generated number.

And that’s all. The next step is to “deploy” this class as we explained earlier and to
configure it in the sitemap. Add the following line to the map:actions section of the
sitemap:

<map:action name="random" src="cxa.acting.RandomAction"/>

As an example, put a number of images into Cocoon’s context directory, and name them
starting with 0.jpg, 1.jpg, up to the number of images available. Then add the following
pipeline to the sitemap and make sure that you set the parameter max according to the
number of images you have:

<map:pipeline>
 <map:match pattern="random">
 <map:act type="random">
 <map:parameter name="max" value="5"/>
 <map:read src="{number}.jpg"/>
 </map:act>
 </map:match>
</map:pipeline>

Now start Cocoon, point your browser to
http://localhost:8080/cocoon/random, and reload this page several times.
Isn’t it a good feeling to see your first new sitemap component in action?

Writing an action is a piece of cake. But actions are important because they allow you to
write a component that does not need to know anything about XML or understand such
things as SAX events. The same is true of the next component we will look at: readers.

Readers

A reader is a sitemap component that streams a document directly to the output. This
document is represented by bytes, so this could be any binary information or any text
information, such as a JavaScript file.

The Cocoon distribution already contains the resource reader, which can read any file
from the local hard drive or by using any provided protocol, such as HTTP or FTP. So
you can deliver any file on the hard drive to the client. In addition, you can, for example,
use the resource protocol, which was explained in Chapter 6, “A User’s Look at the
Cocoon Architecture.” With this protocol, you can extract documents from the JAR files
in the classpath.

 261

But what if you have other archives, such as ZIP files, on the hard drive, and you want to
deliver a file from within such an archive to the client without wanting to unpack the
archive beforehand? As you might guess, the answer is simple: Just use the reader you
will now write!

Your reader will get a URI that points to a ZIP file as input, such as archives/images.zip
or http://www.newserver.com/news_2001.zip. Because the reader must
know which document it should extract from the archive, this path is appended to the
URI, so the full URI for your reader will look something like this:
archives/images.zip/people/matthew.jpg.

The reader uses this URI, opens the archive, and extracts the document specified by the
path. The opening of an archive and the extraction of a document from an archive is very
simple in Java. The java.util.zip package contains everything you need for these
operations.

The most important point is the name of your reader. Let’s call it the zip reader. But
before we have a look at the implementation part, we should start with some general
notes about a reader. Like any other sitemap component, a reader is defined by a Java
interface: org.apache.cocoon.reading.Reader. As shown in Listing 9.3, the
Reader interface inherits from the interfaces SitemapModelComponent and
SitemapOutputComponent. The listing contains an extended Java syntax to provide
all information from these three interfaces in one listing.

Listing 9.3 The Reader Interface

package org.apache.cocoon.reading;

import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment.SourceResolver;
import org.apache.cocoon.sitemap.SitemapModelComponent;
import org.apache.cocoon.sitemap.SitemapOutputComponent;
import org.xml.sax.SAXException;

import java.io.IOException;
import java.io.OutputStream;
import java.util.Map;

public interface Reader
 extends interface org.apache.cocoon.sitemap.SitemapModelComponent {

 void setup(SourceResolver resolver, Map objectModel,
 String src, Parameters par)
 throws ProcessingException, SAXException, IOException;
 }
 extends interface org.apache.cocoon.sitemap.SitemapOutputComponent {
 void setOutputStream(OutputStream out) throws IOException;

 String getMimeType();
 boolean shouldSetContentLength();

 262

 }

 String ROLE = "org.apache.cocoon.reading.Reader";

 void generate()
 throws IOException, SAXException, ProcessingException;

 long getLastModified();
}

When the Cocoon processor processes the request, the component manager looks up the
reader and configures it according to the life-cycle interfaces it implements. Following
this initialization, the processor gives additional information to the reader; the setup
method shown in Listing 9.3 is invoked first. With this method, the reader gets the
important source resolver instance, the object model for the current request, the source
information from the sitemap, and all the possible sitemap parameters specified for the
reader.

During this setup phase, a reader can perform any initialization it requires based on what
it receives. Your zip reader does not require anything to be done during this part of the
initialization.

After the setting up of the reader, the Cocoon processor asks for the document’s mime
type. If the reader is able to detect the document’s mime type, it should return it. If this is
not possible, the reader can simply return null. In this case, the Cocoon processor uses
information from the map:read instruction in the sitemap. Remember that you can
specify a document’s mime type using an attribute of the same name: <map:read
mime-type="image/jpg" src="images/hello.jpg"/>.

Your zip reader will not provide a document’s mime type for the Cocoon processor.
Instead, you need to hard-code the correct mime type into the sitemap, as just shown. The
reason for this is obvious: The requested document can have any mime type, and the
archive does not contain any information about the mime-type or format of an archived
file. So, in order to provide this information, your reader must detect a file’s format by
itself.

The next piece of information that the Cocoon processor requests from the reader is the
last modification date of the document in question. If the reader can provide this
information, the Cocoon processor can make use of this information in order to speed up
the document generation. The HTTP protocol provides special headers that are then sent
from the client with the request. The server—or, in this case, Cocoon—can make use of
this information and check whether the version on the client is still valid. If the client
version is valid, the server informs the client of this without the need to regenerate the
document. If the client version is no longer valid, the server generates the new document
and returns it.

Validity checking is exactly the purpose of the getLastModified method. If the
reader returns a nonzero value, Cocoon uses this information to check the document’s

 263

validity. If the reader returns 0, it can’t determine when the document was last modified.
In this case, a new document is generated on each request.

If the document still needs to be generated, the Cocoon processor invokes the
shouldSetContentLength method. If the reader returns true, the processor sets
the correct content length for the response. If false is returned, the response doesn’t
contain any information about the document’s length. Some formats, such as PDF,
require a correct content length to be set in the response.

The last information the reader gets from the processor is the output stream the reader can
write the document to. This is set by the setOutputStream method.

After the reader is set up correctly and everything has been checked, the processor
invokes the generate method. This starts the real process of reading the document. In
the case of your zip reader, the reader gets the archive, extracts the document in question,
and writes this document to the provided output stream.

Let’s start with your reader. For the easy writing of readers, Cocoon already provides an
abstract class that your reader can inherit from. Then you only have to focus on the really
important methods. The abstract class is called AbstractReader. Listing 9.4 shows
this class and the provided functionality. The class inherits from AbstractLoggable
and Recyclable. The component manager passes a logger into the reader. The reader
is pooled, and when it is passed back into the pool, the recycle method is called.

Listing 9.4 The AbstractReader Class

package org.apache.cocoon.reading;

import org.apache.avalon.excalibur.pool.Recyclable;
import org.apache.avalon.framework.logger.AbstractLoggable;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment.SourceResolver;
import org.xml.sax.SAXException;

import java.io.BufferedOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Map;

public abstract class AbstractReader
extends AbstractLoggable
implements Reader, Recyclable {

 protected SourceResolver resolver; // The source resolver
 protected Map objectModel; // The object model
 protected Parameters parameters; // The sitemap parameters
 protected String source; // The source information
 protected OutputStream out; // The output stream

 264

 /** Store the parameters in resolver, objectModel, source
 and parameters */
 public void setup(SourceResolver resolver, Map objectModel,
 String src, Parameters par);

 /** Store the output stream in out */
 public void setOutputStream(OutputStream out);

 /** Return null */
 public String getMimeType();

 /** Return zero */
 public long getLastModified();

 /** Return false */
 public boolean shouldSetContentLength();

 /** Reset instance variables */
 public void recycle();
}

For each object set by the Cocoon processor, the abstract reader has an instance variable
that stores the source resolver, the object model, the source information from the sitemap,
the sitemap parameters, and the output stream. All these objects are cleaned up in the
recycle method.

Furthermore, the abstract class already implements most of the additional methods.
The getLastModified method always returns 0, the
shouldSetContentLength method returns false, and the getMimeType
method returns null.

So the only method missing is the generate method, which does the real work. The
first thing you have to do is extract the URI for the ZIP archive from the source
information passed to the reader. You do this by searching for the file extension .zip in
the URI:

int position = this.source.indexOf(".zip");
if (position == -1) {
 throw new ProcessingException("The URI does not point to a ZIP archive.");
}
String zipURI = this.source.substring(0, position + 4);

If the URI does not point to a ZIP archive, you throw a ProcessingException. The
next step is to extract the document name from the original URI. Remember that a URI
for your zip reader looks like this: archive.zip/documentname. So you extract everything
after .zip/ from the URI:

String documentName = this.source.substring(position + 5);

 265

Now you have all the information you need to process the request. You now ask the
source resolver for a source object for the archive:

Source archive;
try {
 archive = this.resolver.resolve(zipURI);
 ...
} finally {
 if (archive != null) archive.recycle();
}

What follows is nothing specific to Cocoon but everyday Java code. The source object
provides an input stream you can use to read from the archive. You use some classes of
the java.util.zip package to read this stream and search for the desired entry. When the
entry is found, it is read byte by byte and is written directly to the output stream. You can
see this very straightforward code here:

ZipInputStream zipStream = new Z
ZipEntry document = null;
boolean found = false;
do {
 document = zipStream.getNextEntry();
 if (document != null) {
 if (document.getName().equals(documentName)) {
 found = true;
 } else {
 // go to next entry
 zipStream.closeEntry();
 }
 }
} while (document != null && found == false);

if (document == null)
 throw new ResourceNotFoundException("The document " + documentName + "

is not in the
archive);

byte[] buffer = new byte[8192];
int length = -1;

while (zipStream.available() > 0) {
 length = zipStream.read(buffer, 0, 8192);
 if (length > 0) {
 this.out.write(buffer, 0, length);
 }
}
zipStream.close();
this.out.flush();

The do-while loop reads one entry after the other from the archive and compares the
name of the entry with the name of the desired document. The loop is finished either if

 266

the document is found or if there are no further entries. In this case, a
ResourceNotFoundException is raised.

When the document is found, the entry from the archive is read in chunks of 8192 bytes
and is written directly to the output stream. After the entry is finished, everything is
closed, and the reader has finished its work. If you are unfamiliar with the java.io or
java.util.zip packages, just browse through the JDK documentation to see what we have
done here.

Congratulations! This is your first working reader. As you can see from the number of
lines of Java code, it is really very easy to write your own reader. The interfaces
presented by Cocoon in addition to the provided abstract classes let you focus on the
important parts of the reader.

Let’s now put this component into action by first deploying it in the Cocoon web
application. Then you have to add the following line to the sitemap’s map:readers
section:

<map:reader name="zip" src="cxa.reading.ZipReader"/>

Put a zipped archive with, for example, some images into Cocoon’s context directory,
and name this archive images.zip. Now add the following pipeline to the sitemap, and
choose a document name that the zip reader should return from the archive:

<map:pipeline>
 <map:match pattern="zipread">
 <map:read type="zip" mime-type="image/jpg"

src="images.zip/test.jpg"/>
 </map:match>
</map:pipeline>

Now start Cocoon and invoke http://localhost:8080/cocoon/zipread.
This reads the image test.jpg from the archive images.zip. Note that you explicitly set the
document’s mime type to indicate that this is an image, because your reader cannot test
the mime type.

We suggest that you play around with this component and perhaps extend it. The current
implementation assumes that the archive name ends with .zip. What about making the
ending configurable using a parameter? Just experiment a bit with the component. When
you feel comfortable developing a component such as a reader, you can move on to the
next sitemap component in line.

Generators

You’ve managed to write your own reader, so let’s increase the complexity of your
components a little and write a generator.

 267

From an implementation point of view, a generator is very similar to a reader. Both
generate a document. Whereas a reader can deliver any document, even binary
information, a generator can send only SAX events.

You already have a reader that extracts a document from an archive. You will stick to this
sample scenario and build a generator that extracts a document from an archive but also
assumes that this document contains XML. The zip generator will parse the document
and send the SAX events to the pipeline for further processing.

So, again, let’s first have a look at the generator interface. It is shown in Listing 9.5. This
interface is somewhat simpler than the reader interface. But it also extends the
SitemapModelComponent interface and the XMLProducer interface.

Listing 9.5 The Generator Interface

package org.apache.cocoon.generation;

import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.sitemap.SitemapModelComponent;
import org.apache.cocoon.xml.XMLConsumer;
import org.apache.cocoon.xml.XMLProducer;
import org.xml.sax.SAXException;

import java.io.IOException;

public interface Generator
 extends org.apache.cocoon.xml.XMLProducer {
 void setConsumer(XMLConsumer consumer);
 }
 extends org.apache.cocoon.sitemap.SitemapModelComponent {
 void setup(SourceResolver resolver, Map objectModel,
 String src, Parameters par)
 throws ProcessingException, SAXException, IOException;
 }

 String ROLE = "org.apache.cocoon.generation.Generator";

 void generate()
 throws IOException, SAXException, ProcessingException;
}

During the processing and after the generator and the other pipeline components are
looked up, the Cocoon processor initializes the generator by calling the setup method.
By invoking this method, the generator gets the source resolver, the object model
describing the request, the source information from the sitemap, and the sitemap
parameters.

In addition, the setConsumer method is invoked from the processor. With this method,
the generator gets the next component of the XML processing pipeline. The generator
sends all SAX events to this consumer.

 268

The last method a generator has to implement is the generate method. Similar to
readers, this is the main part of the generator. It reads whatever documents are required
and generates the SAX events from the data.

In the case of your zip generator, the generate method opens the archive and extracts
the XML document. This extracted document is passed to the XML parser, and the parser
sends the SAX events to the XML consumer.

Let’s start implementing. Again, Cocoon already offers some abstract classes you can
inherit from. A generator has at least two: AbstractGenerator and
ComposerGenerator. ComposerGenerator extends AbstractGenerator by
also implementing the Avalon Composable interface to get a component manager.
Because you need an XML parser to parse the document, you need a component manager.
Therefore, you extend ComposerGenerator, as shown in Listing 9.6.

Listing 9.6 The ComposerGenerator Class

package org.apache.cocoon.generation;

import org.apache.avalon.excalibur.pool.Recyclable;
import org.apache.avalon.framework.component.ComponentException;
import org.apache.avalon.framework.component.ComponentManager;
import org.apache.avalon.framework.component.Composable;
import org.apache.avalon.framework.logger.AbstractLoggable;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment.SourceResolver;
import org.apache.cocoon.xml.XMLConsumer;
import org.apache.cocoon.xml.XMLProducer;
import org.xml.sax.SAXException;
import java.io.IOException ;
import java.util.Map;

public abstract class ComposerGenerator
extends AbstractGenerator
implements XMLProducer, Composable, Recyclable {

 protected ComponentManager manager; // The component manager
 protected SourceResolver resolver; // The source resolver
 protected Map objectModel; // The object model
 protected Parameters parameters; // The sitemap parameters
 protected String source; // The source information
 protected XMLConsumer xmlConsumer; // The SAX consumer

 /** Store the component manager into manager */
 public void compose(ComponentManager manager) throws

ComponentException;

 /** Store the parameters in resolver, objectModel, source
 and parameters */
 public void setup(SourceResolver resolver, Map objectModel,
 String src, Parameters par);

 269

 /** Store the consumer in xmlConsumer */
 public void setConsumer(XMLConsumer consumer);

 /** Reset instance variables */
 public void recycle();
}

The ComposerGenerator implements all the methods required for a generator except
the generate method. All the important information is stored in instance variables: the
component manager, the source resolver, the object model, the source information from
the sitemap, the sitemap parameters, and, last but not least, the XML consumer.

The ComposerGenerator implements the Avalon Loggable, Composable, and
Recyclable interfaces. This means that you get the logger for debugging, the
generator is pooled, and the recycle method is called to allow the generator to clean
up.

Because the zip generator is very similar to the zip reader, we will not explain it line by
line. We will focus on the differences. Listing 9.7 shows the complete code for the zip
generator.

Listing 9.7 The ZipGenerator Class

package cxa.generation;

import org.apache.avalon.excalibur.pool.Poolable;
import org.apache.avalon.framework.component.ComponentException;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.ResourceNotFoundException;
import org.apache.cocoon.components.parser.Parser;
import org.apache.cocoon.environment.Source;
import org.apache.cocoon.generation.ComposerGenerator;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;

public class ZipGenerator
 extends ComposerGenerator
 implements Poolable {

 public void generate()
 throws SAXException, IOException, ProcessingException {
 int position = this.source.indexOf(".zip");

 String zipURI = this.source.substring(0, position + 4);
 String documentName = this.source.substring(position + 5);

 Source archive = null;

 270

 try {
 archive = this.resolver.resolve(zipURI);

 ZipInputStream zipStream = new

ZipInputStream(archive.getInputStream());
 ZipEntry document = null;
 boolean found = false;
 do {
 document = zipStream.getNextEntry();
 if (document != null) {
 if (document.getName().equals(documentName)) {
 found = true;
 } else {
 // go to next entry
 zipStream.closeEntry();
 }
 }
 } while (document != null && found == false);

 if (document == null)
 throw new ResourceNotFoundException(documentName + " not

found.");
 // now we will extract the document and write it into a byte array
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 byte[] buffer = new byte[8192];
 int length = -1;

 while (zipStream.available() > 0) {
 length = zipStream.read(buffer, 0, 8192);
 if (length > 0) {
 baos.write(buffer, 0, length);
 }
 }
 zipStream.close();
 baos.flush();

 // now we create the InputSource object for the parser
 ByteArrayInputStream is = new

ByteArrayInputStream(baos.toByteArray());
 Parser parser = null;
 try {
 InputSource source = new InputSource(is);

 parser = (Parser) this.manager.lookup (Parser.ROLE);
 parser.setConsumer(this.xmlConsumer);
 parser.parse(source);
 } catch (ComponentException ce) {
 throw new ProcessingException("Component Parser not found.",

ce);
 } finally {
 this.manager.release(parser);
 is.close();
 }
 } finally {
 if (archive != null) archive.recycle();
 }
 }

 271

}

Can you spot the differences between the reader and the generator? The implementation
of the generate method starts with the same lines until the entry for the document is
found in the archive. Whereas the reader reads the document and then streams it to the
output stream, the generator does not know anything about an output stream.

Instead, the generator writes the extracted document to a ByteArrayOutputStream
in order to get a byte array from the document. This byte array is then fed into a
ByteArrayInputStream. This stream can then be used for the XML parser. So the
last part of the generator implementation looks up the parser component and creates an
InputSource object from the input stream. The parser parses this input source and
sends the SAX events to the XML consumer, which is the next component in the XML
processing pipeline.

You know that using a ByteArrayOutputStream and then a
ByteArrayInputStream is not the fastest way to do this, nor is it as elegant as it
could be. However, this chapter is not about writing high-performance, state-of-the-art
code. It’s about writing easy-to-understand components for Cocoon. So we lay the focus
on Cocoon and not on Java. However, you can use this part of the generator for your own
experiments and modify the code.

Anyway, that is all you have to write for your generator. Again, the implementation is
very simple and straightforward. So let’s deploy the component and add the following
line to the sitemap’s map:generators section:

<map:generator name="zip" src="cxa.generation.ZipGenerator"/>

In order to test the generator, you have to put an archive into Cocoon’s context directory,
which contains an XML document. The following pipeline assumes that this archive is
named documents.zip and that it contains a document called a.xml. If you have other
names, you should change the sample pipeline:

<map:pipeline>
 <map:match pattern="zipgenerate">
 <map:generate type="zip" src="documents.zip/a.xml"/>
 <map:serialize type="xml"/>
 </map:match>
</map:pipeline>

Start Cocoon and go to http://localhost:8080/cocoon/zipgenerate. You
will see the XML document in your browser. Again, we suggest that you now experiment
a bit with the generator and extend it in additional ways in order to get a better idea of
how to write generators. If you are tired of generators and want to learn more, we will
now discuss the most complex sitemap component: the transformer.

 272

Transformers

The component you will probably end up writing the most is a transformer. A
transformer is an XML pipe object: It receives SAX events from a previous component
in the pipeline and also sends SAX events to the following component.

The usual behavior of a transformer is that it triggers on some special XML elements. For
example, the sql transformer listens for a query element in order to execute a SQL
command. It’s common for each transformer to use its own namespace to avoid conflicts.
This means that a transformer listens for SAX events that contain its namespace. All
other events are forwarded unchanged to the next component in the pipeline.

Whenever a transformer receives an element it understands, this element and its XML
subtree are consumed by the transformer. It usually records the information contained in
the subtree, processes the information, and then sends new SAX events containing the
result of the process to the next component in line. For example, the sql transformer waits
for the query element and records the SQL statement to be processed. When the
transformer has all the relevant information, the SQL command is executed, the result is
transformed to XML, and the correct SAX events are generated.

During the next few pages, you will develop your mail transformer. This transformer can
collect the necessary information it needs to send an email from the SAX events. When
the transformer has all the information, such as the subject, the receiver, and the body of
the email, it sends the email. After the email is sent, the transformer creates some SAX
events indicating either the success or failure of the sending process.

Let’s start by looking at the Transformer interface that a custom transformer has to
implement. Listing 9.8 contains the interface. It extends the XMLPipe interface.
Therefore, a transformer is an XML producer like a generator and an XML consumer
implementing the ContentHandler and the LexicalHandler interface. In
addition, a transformer, like a reader, is a SitemapModelComponent. So the setup
method is called by the processor to initialize the transformer for the current request.

Listing 9.8 The Transformer Interface

package org.apache.cocoon.transformation;

import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment.SourceResolver;
import org.xml.sax.SAXException;
import java.io.IOException;
import java.util.Map;

public interface Transformer
 extends org.apache.cocoon.xml.XMLPipe,
 extends org.apache.cocoon.sitemap.SitemapModelComponent {
 void setup(SourceResolver resolver, Map objectModel,
 String src, Parameters par)

 273

 throws ProcessingException, SAXException, IOException;
 }

 String ROLE = "org.apache.cocoon.transformation.Transformer";
}

As with all the other components, Cocoon provides an abstract class—the
AbstractTransformer class. Listing 9.9 shows this class and its methods. It inherits
from the AbstractXMLPipe class, which implements all the methods of the
XMLPipe interface and also implements the Loggable interface. In addition, an XML
pipe is Recyclable.

Listing 9.9 The AbstractTransformer Class

package org.apache.cocoon.transformation;

import org.apache.cocoon.xml.AbstractXMLPipe;

public abstract class AbstractTransformer
extends AbstractXMLPipe
implements Transformer {
}

Because an XML pipe is a producer, it needs an XML consumer. This is stored in the
instance variable xmlConsumer, which contains the next pipeline component. The
XML pipe is also an XML consumer, so it must implement the content handler and
lexical handler interface. The implementation of AbstractXMLPipeline forwards
all received SAX events to xmlConsumer.

The only method not implemented by the AbstractTransformer class is the
setup method. So you have to implement this yourself. But before we go into the
details of implementing the mail transformer, let’s look at an example of how to use it.
The following XML sends an email when it is processed by the mail transformer:

<?xml version="1.0"?>
<document xmlns:mail="http://cxa/cocoon/sendmail">
 <mail:sendmail>
 <mail:mailto>myemail@mywebaddress.com</mail:mailto>
 <mail:mailsubject>Test Email</mail:mailsubject>
 <mail:mailbody>
 This is a test email.
 </mail:mailbody>
 </mail:sendmail>
</document>

The transformer listens for elements having the namespace
http://cxa/cocoon/sendmail. The sending of an email is indicated by the
element sendmail. The required information for an email—the receiver, the subject,
and the body—are given by the three XML elements mailto, mailsubject, and

 274

mailbody. All three elements can contain arbitrary text that provides the required
information.

Your mail transformer collects this information. It starts collecting when it receives the
startElement event for the sendmail element. When it receives the
startElement event for the mailto object, it records all the incoming character
events to get the recipient until the endElement event for mailto arrives. The same
applies for the mailsubject and mailbody elements. When the transformer receives
the endElement event for the sendmail element, it sends the email with the
provided information.

From this description, you see that you have to keep status information inside the
transformer. Using this status information, the transformer knows what information it is
currently receiving: the subject, the receiver, the body, or any information that is outside
the sendmail element. So let’s start your implementation. Listing 9.10 contains the
initialization of the transformer.

Listing 9.10 The Initialization of SendMailTransformer

package cxa.transformation;

public class SendMailTransformer
extends AbstractTransformer
implements Parameterizable, Poolable {

 public static final String NAMESPACE = "http://cxa/sendmail";
 public static final String SENDMAIL_ELEMENT = "sendmail";
 public static final String MAILTO_ELEMENT = "mailto";
 public static final String MAILSUBJECT_ELEMENT = "mailsubject";
 public static final String MAILBODY_ELEMENT = "mailbody";

 protected static final int MODE_NONE = 0;
 protected static final int MODE_TO = 1;
 protected static final int MODE_SUBJECT = 2;
 protected static final int MODE_BODY = 3;

 protected int mode;
 protected StringBuffer toAddress;
 protected StringBuffer subject;
 protected StringBuffer body;

 protected String mailHost;
 protected String fromAddress;

 public void parameterize(Parameters parameters)
 throws ParameterException {
 this.mailHost = parameters.getParameter("mailhost");
 this.fromAddress = parameters.getParameter("from");
 }

 public void setup(SourceResolver resolver,
 Map objectModel,

 275

 String src,
 Parameters par)
 throws ProcessingException, SAXException, IOException {
 this.mode = MODE_NONE;
 this.toAddress = new StringBuffer();
 this.subject = new StringBuffer();
 this.body = new StringBuffer();
 }

}

The SendMailTransformer class inherits from the AbstractTransformer
class. It also implements the Parameterizable interface, because the transformer
needs some configuration details. In the parameterize method, the transformer gets
the mail host and the from address used to send emails.

Because the transformer listens for elements with a distinct namespace, you define a
constant called NAMESPACE. You also define a constant for each element name the
transformer is interested in. As we discussed, your transformer needs to keep a status of
which information it is currently in the process of receiving. So you define constants for
each possible status and an instance variable called mode that contains this status.

During the setup method, you set this status to “outside the sendmail element.” In
addition, you have three instance variables for the mail receiver, the subject, and the body.
All these are initialized during the setup method.

The remaining portion of the transformer is the code that receives the startElement,
characters, and endElement events. Let’s start with the startElement and
characters events. The implementation of the corresponding methods is shown in
Listing 9.11.

Listing 9.11 The startElement and characters Events

public void startElement(String uri, String name, String raw,
 Attributes attr)
throws SAXException {

 if (uri != null && uri.equals(NAMESPACE)) {
 if (name.equals(SENDMAIL_ELEMENT) == true) {
 // No need to do anything here
 } else if (name.equals(MAILTO_ELEMENT) == true) {
 this.mode = MODE_TO;
 } else if (name.equals(MAILSUBJECT_ELEMENT) == true) {
 this.mode = MODE_SUBJECT;
 } else if (name.equals(MAILBODY_ELEMENT) == true) {
 this.mode = MODE_BODY;
 } else {
 throw new SAXException("Unknown element " + name);
 }
 } else {
 // Not for us

 276

 super.startElement(uri, name, raw, attr);
 }

}

public void characters(char[] buffer, int start, int length)
throws SAXException {
 switch (this.mode) {
 case MODE_NONE : super.characters(buffer, start, length);
 break;
 case MODE_TO : this.toAddress.append(buffer, start, length);
 break;
 case MODE_SUBJECT : this.subject.append(buffer, start, length);
 break;
 case MODE_BODY : this.body.append(buffer, start, length);
 break;
 }
}

In the startElement event method, you test for the namespace of the mail
transformer. If the current element has the correct namespace, you test for one of the four
possible elements and set the mode instance variable according to this information. If
this element does not have the correct namespace, you simply call the super
implementation of the startElement event method. This sends the SAX event to the
next component in the pipeline.

The characters event method is called for all text information. If the transformer is
currently in the mode of recording information, the incoming text is appended to either
the subject, the body, or the receiver. Otherwise, the SAX event is sent to the next
component in the pipeline.

The last remaining task is to implement the endElement method. The implementation
is shown in Listing 9.12. This method’s layout is very similar to the startElement
event method: It tests for the namespace of the transformer and then for one of the four
possible elements. If the element is either the subject, body, or receiver element,
the transformer’s mode is reset.

If the element is the sendmail element, the transformer starts its real work by sending
the email. The following code uses the JavaMail API provided by Sun to send an email.
Please refer to the JavaMail API documentation for more information.

Listing 9.12 The endElement Events

public void endElement(String uri, String name, String raw)
throws SAXException {
 if (uri != null && uri.equals(NAMESPACE)) {
 if (name.equals(SENDMAIL_ELEMENT) == true) {
 String text;
 try {
 Properties props = new Properties();
 props.put("mail.smtp.host", this.mailHost);

 277

 Session mailSession = Session.getInstance(props, null);

 MimeMessage pm = new MimeMessage(mailSession);

 // set from
 pm.setFrom(new InternetAddress(this.fromAddress));
 // set to
 pm.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(this.toAddress.toString()));
 // set subject
 pm.setSubject(this.subject.toString());
 // set date
 pm.setSentDate(new Date());
 // set content
 pm.setText(this.body.toString());
 // send mail
 Transport trans = mailSession.getTransport("smtp");
 Transport.send(pm);
 // success message
 text = "Sending mail to " + this.toAddress + " was successful.";
 } catch (Exception any) {
 this.getLogger().error("Exception during sending of mail",

any);
 // failure message
 text = "Sending mail to " + this.toAddress + " failed!";
 }
 // create SAX events for success/failure
 super.startElement(NAMESPACE, "sendmail", "sendmail", new

AttributesImpl());
 super.characters(text.toCharArray(), 0, text.length());
 super.endElement(NAMESPACE, "sendmail", "sendmail");

 } else if (name.equals(MAILTO_ELEMENT) == true) {
 // mailto received
 this.mode = MODE_NONE;
 } else if (name.equals(MAILSUBJECT_ELEMENT) == true) {
 this.mode = MODE_NONE;
 } else if (name.equals(MAILBODY_ELEMENT) == true) {
 this.mode = MODE_NONE;
 } else {
 throw new SAXException("Unknown element " + name);
 }
 } else {
 // not for us
 super.endElement(uri, name, raw);
 }
}

After the email is sent, the transformer creates some new SAX events that are sent to the
next component in the pipeline. These events create a sendmail element. It has either a
message that the sending of the email was successful as content or a failure message in
case an error happened.

 278

So, in fact, the mail transformer consumes the elements it understands and replaces them
with a result. As you can tell from the number of lines required to implement the
transformer, it is simple and straightforward to write a transformer that acts this way.

Now, let’s use the transformer. Before you can compile the transformer, you need the
JavaMail API and the JavaBean Activation Framework. Both are available as downloads
from Sun or might already be available, depending on which servlet engine you use.
Refer to Appendix C, “Links on the Web,” for the URI where you can download these
components. Also refer to your servlet engine’s documentation for additional information.
Place the two JAR files from the two packages into your classpath/IDE, and then compile
the transformer. Add the following lines to the map:transformers section of the
sitemap and change the configuration settings according to your environment:

<map:transformer name="mail"

src="cxa.transformation.SendMailTransformer">
 <parameter name="mailhost" value="mymailhost"/>
 <parameter name="from" value="from@myhost.com"/>
</map:transformer>

Restart your servlet engine, and add a pipeline to the sitemap that contains the mail
transformer. Use the file generator to read an XML document similar to this one:

<?xml version="1.0"?>
<document xmlns:mail="http://cxa/sendmail">
 <mail:sendmail>
 <mail:mailto>myemail@mywebaddress.com</mail:mailto>
 <mail:mailsubject>Test Email</mail:mailsubject>
 <mail:mailbody>
 This is a test email.
 </mail:mailbody>
 </mail:sendmail>
</document>

When you use the xml serializer, the resulting document should look like this (perhaps
with a different message):

<?xml version="1.0"?>
<document xmlns:mail="http://cxa/sendmail">
 <mail:sendmail>
 Sending mail to myemail@mywebaddress.com was successful.
 </mail:sendmail>
</document>

Experiment with the transformer. Try adding new elements interpreted by the transformer,
and perhaps send more new events after the email is sent or when an error occurs.
Because transformers are one type of component that is often needed, we suggest that
you perhaps write further transformers that react to different tags and perform other tasks.
How about a transformer that receives mail for a particular user from a mail server? After

 279

having enough of transformers, you might then want to find out about other Cocoon
components. Perhaps a selector is more the component you need, so let’s move on.

Selectors

Implementing a transformer is the hardest development task when it comes to building
sitemap components, so if you are still with us, be assured that things will be getting
easier from now on. Next in line is the selector. The interface is shown in Listing 9.13.

Listing 9.13 The Selector Interface

package org.apache.cocoon.selection;

import org.apache.avalon.framework.component.Component;
import org.apache.avalon.framework.parameters.Parameters;

import java.util.Map;

public interface Selector extends Component {

 String ROLE = "org.apache.cocoon.selection.Selector";

 boolean select (String expression, Map objectModel, Parameters

parameters);
}

As the listing shows, a selector is just as simple as an action. It consists of exactly one
method that must be implemented: the select method. Therefore, a selector is, in most
cases, thread-safe and should extend the ThreadSafe interface.

When the select method is called, it gets three arguments: the current object model,
the expression from the map:when clause, and possibly some parameters specified for
the selector. The methods simply return true if the test is successful; otherwise, false
must be returned. For each map:when in the sitemap, the select method is called,
until one invocation returns true. If all calls return false, the map:otherwise
branch is evaluated. So the select method might be called more than once for one
map:select statement evaluation in the sitemap.

The question now is what information you want your new selector to select. We thought a
season selector, which selects based on the current season of the year, might be an
interesting addition. This information/selection can then be used to display the documents
with a winter or summer look and feel. Here is the usage of the selector:

<map:generate src="document.xml">
<map:select type="season">
 <map:when test="winter">
 <map:transform src="doc2html_wintertime.xsl"/>
 </map:when>
 <map:when test="summer">

 280

 <map:transform src="doc2html_summertime.xsl"/>
 </map:when>
 <map:otherwise>
 <map:transform src="doc2html.xsl"/>
 </map:otherwise>
</map:select>
<map:serialize/>

Your selector tests for five identifiers: summer, winter, spring, fall, and autumn.
When this information is passed into the select method, the current date is checked to
see if it is in this season. The result of this test is returned. The complete code is shown in
Listing 9.14.

Listing 9.14 The SeasonSelector Class

package cxa.selection;

import org.apache.avalon.framework.logger.AbstractLoggable;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.avalon.framework.thread.ThreadSafe;
import org.apache.cocoon.selection.Selector;
import java.util.Calendar;
import java.util.Map;

public class SeasonSelector
 extends AbstractLoggable
 implements Selector, ThreadSafe {

 public boolean select(String expression, Map objectModel, Parameters

parameters) {
 boolean result;
 // get the current month
 Calendar currentDate = Calendar.getInstance();
 int month = currentDate.get(Calendar.MONTH);

 // compare
 if ("summer".equalsIgnoreCase(expression)) {
 result = (month >= Calendar.JUNE && month <= Calendar.AUGUST);
 } else if ("autumn".equalsIgnoreCase(expression)
 || "fall".equalsIgnoreCase(expression)) {
 result = (month >= Calendar.SEPTEMBER && month <=

Calendar.NOVEMBER);
 } else if ("winter".equalsIgnoreCase(expression)) {
 result = (month == Calendar.DECEMBER || month <=

Calendar.FEBRUARY);
 } else if ("spring".equalsIgnoreCase(expression)) {
 result = (month >= Calendar.MARCH && month <= Calendar.MAY);
 } else {
 // unknown expression
 result = false;
 }

 return result;
 }
}

 281

The season selector does not perform 100% correctly when testing for the season. It
checks only for the month, not for the date. For example, June, July, and August are
considered summer. Now let’s configure your new selector in the sitemap inside the
map:selectors section:

<map:selector name="season" src="cxa.selection.SeasonSelector"/>

You can test the selector with a pipeline like the one we showed at the introduction to
selector components. You will get your document layout for the current season. However,
if you want to test the other seasons, you might have to wait a few months. In the
meantime, let’s develop some more components for Cocoon.

Isn’t it simple to write a selector? We suggest that you now try to write your own selector
that selects based on the current time of day so that your document can use darker colors
at night and brighter ones during the day. With the selector component, we complete our
developer’s tour through the sitemap components. We will now get on with some
advanced topics.

Advanced Components

Congratulations! You have written your own first components and extended Cocoon by
adding your own sitemap components. But believe us: It gets even more exciting. In the
previous examples, you developed some components that read documents from an
archive: the zip reader and the zip generator. They are both very helpful components, but
they have at least two disadvantages: They do not support the Cocoon caching algorithm,
and it is not possible for other components such as transformers to also access an archive.

We will first show you how you can make the sitemap components cache-aware.
Afterwards, you will develop your own zip protocol. With this protocol you can access
documents from within an archive everywhere a URI is allowed. But first, here are some
notes about caching.

Making Components Cacheable

We explained the basic caching algorithm in Chapter 6. We will now only repeat the
important pieces of information you need to implement cacheable sitemap components.
The caching algorithm builds a unique key for each request. Using this key, the algorithm
can detect whether the response has already been cached. If it was cached before, the key
points to a collection of validity objects and the cached response itself. The
validity objects are compared with the newly generated validity objects to test
whether the cached response is still valid.

The caching algorithm needs two pieces of information: a unique key and a validity
object. These two pieces of information are provided by each sitemap component that
supports caching. In particular, this means either a reader, a generator, a transformer, or a

 282

serializer. If such a component is cache-aware, it implements the Cacheable interface,
as shown in Listing 9.15.

Listing 9.15 The Cacheable Interface

package org.apache.cocoon.caching;

public interface Cacheable {

 long generateKey();

 CacheValidity generateValidity();
}

This interface consists of two methods: generateKey, which provides a unique key for
the current instance of the component, and generateValidity, which returns a
validity object that can be used to test whether the cached content is still valid.

To explain these two methods, let’s have a look at a real-world example of a cacheable
component: the file generator. The key generated by the generator is required to be
unique within the space of this component type. This means that the file generator must
provide different keys if it reads different source documents. Different types of
generators can generate the same key without any conflict. The caching algorithm
automatically distinguishes between keys from a file generator and, for example, keys
from an html generator.

The component should build the key by assembling all the information required for the
current usage of this component in the pipeline. In other words, the key must be built
using all the input information for this component. In the case of the file generator, this is
the URI of the XML document. So the file generator builds its key from the URI by
hashing the string.

However, the html generator does not have only the URI as input. It also has two
parameters. Therefore, the html generator hashes not only the URI but also the values of
these two parameters.

The second piece of information required for the caching algorithm is a
CacheValidity object. The interface is shown in Listing 9.16. The interface consists
of only one method: isValid. As just explained, the caching algorithm stores the
validity object together with the key. When a cached document is requested the next
time, the sitemap components producing the document provide new validity objects
for the request. These objects are then compared to the cached versions.

Listing 9.16 The CacheValidity Interface

package org.apache.cocoon.caching;

public interface CacheValidity extends java.io.Serializable {

 283

 boolean isValid(CacheValidity validity);
}

In the case of the file generator, this means that the generator stores the last modification
date of the document in the cache validity object. So the cached document always
contains a validity object with the last modification date of the read XML document.
The next time the same document is requested, the file generator provides a new cache
validity object with the current last modification date of the XML document. The
two validity objects are then compared. If the last modification date is the same, the
cached response is valid.

Cocoon already contains some implementations of the CacheValidity interface:

• AggregatedCacheValidity: This can be used if several validity
objects must be combined to check the validity.

• CompositeCacheValidity: This is the same as
AggregatedCacheValidity, except that only two cache validity
objects can be combined.

• NOPCacheValidity: This validity object is always valid. It can be used
whenever an up-to-date check is not required. This is the case if the component
does not change the content of the generated document, like most serializers do.

• TimeStampCacheValidity: This validity object compares timestamps.
It’s used the most often, because it is used by many components to hold the last
modification date of a document, such as the read XML document or the used
XSLT stylesheet.

For many components, the implementation of the Cacheable interface is very similar.
The generated cache key is produced by hashing a URI, and the cache validity is built by
getting the last modification date of that URI.

The caching algorithm can work only if the sitemap components know about their input
before the caching algorithm calls the generateKey or generateValidity
method. The first method called by the caching algorithm is always the setup method
of the SitemapModelComponent interface. With this method, the component gets all
the information it requires to build the key.

The next method invoked is the generateKey method. It might be possible that a
component normally is cacheable, but for some reason it isn’t at this particular time. For
example, perhaps it can’t get all the information required to generate the key or the
validity object. In this case, the component should return 0 for the key. This indicates
to the caching algorithm that the request currently isn’t cacheable.

However, if the key is not 0, the caching algorithm calls the generateValidity
method next. Again, if the request currently isn’t cacheable, the component has a chance
to return null, indicating this.

 284

If the response is cached and this cached response is valid, the sitemap component is not
used anymore; it is put back into the pool without the invocation of any other method. If
the response is not cached or is invalid, the Cocoon processor calls the component’s
methods as explained throughout this chapter.

So, each component taking part in the document’s processing can support the caching by
looking at its input. This simple statement needs some further investigation. What is a
component’s input?

For a reader component, this question is easy to answer. A reader’s input is the source
information from the map:read statement and possibly the parameters. This
information is passed to the component during the setup phase, so the reader can easily
generate a key and a validity object from it.

For a serializer, the process is a bit more complicated. On the one hand, a serializer is not
allowed to get source information or any parameters from the sitemap. So there is no
input to a serializer from this side. But the serializer is an XML consumer, so it gets
XML or SAX events as input. Because the methods of the Cacheable interface are
called after the component is set up but long before the XML processing is started, the
serializer does not know anything about its input.

This is obviously a required feature. The caching algorithm can be effective only if the
XML processing does not need to take place in order to check whether a cached
document is valid. If it would require that the document be generated from scratch only to
test the validity, it wouldn’t make sense to take the document from the cache. There
wouldn’t be any performance improvements, making the cache absolutely useless.

The answer to this problem is very simple. The SAX events coming into the serializer are
not assumed to be input when it comes to caching. Imagine a pipeline with a generator, a
transformer, and a serializer. The generator provides a starting point for the XML
processing and sends the starting SAX events to the transformer. Each time the generator
reads or produces the same XML document, the SAX events sent to the transformer are
the same. Because the transformer always receives the same SAX events and does the
same transformations each time, the transformer sends the same set of SAX events to the
serializer each time the pipeline is processed.

In other words, if the previous stages of the pipeline produce the same XML, the
serializer gets the same SAX events as input, and therefore the serialized result is the
same.

This is asserted by the caching algorithm as it first asks the generator for a unique key
and a validity object. Only if a response is cached with this key and only if it is valid
is the next component in the XML pipeline asked. If the key isn’t found or if the validity
check isn’t successful, the remaining components in the pipeline are never asked for their
keys or validity objects.

 285

Let’s assume that the generator provides a cached key and a valid validity object.
The transformer is then asked for its key and validity object. Only if this key is found
and the validity check is successful does the caching algorithm know that the same XML
stream comes from this transformer. And only then can the last component in the pipeline,
the serializer, be queried.

Cocoon’s caching algorithm is very smart. It can use the provided keys and validity
objects to check whether the XML stream between the components will be the same as
during the cached invocation. This leads us to the statement that the input of a sitemap
component is any information apart from the SAX events.

Now let’s come back to the question of what the input for a serializer is. The answer is
simple: The serializer has no input (other than SAX events). So, 99.9% of the time, a
serializer is cacheable, and it can return a constant for the unique key and a
NOPCacheValidity object as the validity object. If the serializer uses some
external information, such as the current date and time, to produce the output, it is not so
easy to determine the cacheability.

In the first run, this algorithm seems very clever, but the world isn’t that perfect. So there
are some drawbacks to the caching algorithm. We stated that if the incoming SAX events
for a transformer are the same during two requests, the output SAX events are also the
same.

Unfortunately, this is not always true. For example, if you use the sql transformer, the
incoming SAX events contain a database query. If during the two requests the content of
the database changes, the output SAX events of the sql transformer will differ even
though the received SAX events were the same. Because during the processing of the
caching algorithm the sql transformer does not know anything about the SQL commands
it will receive, it can calculate neither a unique key nor a validity object. So the
conclusion here is to not make the sql transformer cacheable. But this prevents a pipeline
containing the transformer from being cacheable. In such a case, we say that the input of
the transformer is not only the information passed on from the sitemap but also any
external information, such as the fetched SQL data.

When making a sitemap component cacheable, you have to think about what your
component’s input really is and what it must use to determine whether it is cacheable.
Let’s now make your reader and generator cacheable.

A Cacheable Reader

We will start with the reader. You make a component cacheable simply by implementing
the Cacheable interface. You must figure out what the input of your reader is. The
answer is very simple: It is the URI containing the archive and the document to be
extracted.

 286

You will build a unique key based on this information by simply hashing the URI.
Cocoon provides a powerful hashing algorithm in the HashUtil class. You will use this
algorithm to hash the URI.

The second point for caching is the validity object. When is the cached content
invalid? When the extracted document changes. How do you find out whether this is the
case? First you could ask the archive about the last modification date of the extracted
document. But because the archive might be very large, asking for this information could
take a long time, so you use a simpler approach:You just check the archive’s last
modification date. If the document inside the archive changes, the archive itself changes.

Unfortunately, the opposite is not always true. If the archive changes, the document in
question might not have been changed. But we will neglect this point here.

So, to summarize what we have discussed so far, your cacheable reader generates a hash
of the URI used to extract the document, and it uses TimeStampCacheValidity
with the archive’s last modification date.

There are at least three places where the reader needs a Source object: to calculate the
hash, to get the last modification date, and to read from the archive. Resolving via the
Source object might be a time-consuming task, because a connection to a different
server is established each time to get the required information. You should avoid doing
this three times for only one read process. In order to achieve this, you use the reader’s
setup method to get a Source object for the archive. This object is used throughout
the whole read process. But where can you recycle this object? This is exactly one of the
purposes of the Avalon Recyclable interface: The component can clean up. So you
use the recycle method to recycle the source object for the archive. Listing 9.17
contains the complete cacheable reader.

Listing 9.17 The CacheableZipReader

package cxa.reading;

public class CacheableZipReader
 extends AbstractReader
 implements Recyclable, Cacheable {

 /** The source for the archive */
 protected Source archive;

 /** The document name */
 protected String documentName;

 public void setup() {
 super.setup(resolver, objectModel, src, parameters);

 int position = this.source.indexOf(".zip");
 if (position == -1) {

 287

 throw new ProcessingException("The URI does not point to a ZIP
archive.");

 }
 String zipURI = this.source.substring(0, position + 4);
 this.documentName = this.source.substring(position + 5);

 if (this.getLogger().isDebugEnabled()) {
 this.getLogger().debug("Reading " + documentName + " from zip

archive " +
zipURI);
 }
 this.archive = resolver.resolve(zipURI);
 }
 /**
 * Recycle
 */
 public void recycle() {
 if (this.archive != null) {
 this.archive.recycle();
 this.archive = null;
 }
 }

 /**
 * Generate the unique key.
 * This key must be unique inside the space of this component.
 * This method must be invoked before the generateValidity() method.
 *
 * @return The generated key or <code>0</code> if the component
 * is currently not cacheable.
 */
 public long generateKey() {
 if (this.archive.getLastModified() != 0) {
 return HashUtil.hash(this.archive.getSystemId() + '/' +

this.documentName);
 }
 return 0;
 }

 /**
 * Generate the validity object.
 * Before this method can be invoked the generateKey() method
 * must be invoked.
 *
 * @return The generated validity object or <code>null</code> if the
 * component is currently not cacheable.
 */
 public CacheValidity generateValidity() {
 if (this.archive.getLastModified() != 0) {
 return new

TimeStampCacheValidity(this.archive.getLastModified());
 }
 return null;
 }

 /**
 * Generates the requested resource.

 288

 */
 public void generate()
 throws SAXException, IOException, ProcessingException {
 ZipInputStream zipStream = new

ZipInputStream(archive.getInputStream());
 ZipEntry document = null;
 boolean found = false;
 do {
 document = zipStream.getNextEntry();
 if (document != null) {
 if (document.getName().equals(documentName)) {
 found = true;
 } else {
 // go to next entry
 zipStream.closeEntry();
 }
 }
 } while (document != null && found == false);

 if (document == null)
 throw new ResourceNotFoundException("The document " + documentName

+ " is not in
the archive " + zipURI);

 byte[] buffer = new byte[8192];
 int length = -1;

 while (zipStream.available() > 0) {
 length = zipStream.read(buffer, 0, 8192);
 if (length > 0) {
 this.out.write(buffer, 0, length);
 }
 }
 zipStream.close();
 this.out.flush();

 }

}

As shown in Listing 9.17, the setup method parses the URI and creates a source
object for the archive. This is later cleaned up by the recycle method. You might
wonder why you don’t recycle the source object in the generate method. The reason
is simple: It is not guaranteed that the generate method will be called. First, your
reader is cacheable, so in the case of a cached document, the setup method is called,
but not the generate method. Second, if an error or exception occurs during the
processing, it might be that the generate method is not called due to the exception. But
because the recycle method belongs to the component life-cycle methods, it is called
in all circumstances.

The implementation of the generate method is very similar to the one used for the
noncacheable version. The two methods of the Cacheable interface are also very
straightforward. The generateKey method hashes the complete URI containing the

 289

archive and the document name. The generateValidity method uses the last
modification date of the source object to initialize a TimeStampCacheValidity
instance.

You can see from this cacheable reader that it is very easy to write a cache-aware
component for Cocoon, because only two methods must be implemented. For
performance reasons, you should make your component cacheable whenever possible.

A Cacheable Generator

Making your zip generator cacheable is very similar to making the reader cacheable.
You implement the Cacheable interface and the methods. Again, the generator must
generate a unique key by hashing the URI, and the validity object contains the
archive’s last modification date. So actually, the generator uses exactly the same
implementation as the reader.

We do not provide the solution for the generator in this book because we think this is a
good practical lesson for you. Just look at the cacheable reader again and try to make the
zip generator cacheable by changing the implementation in exactly the same way you
changed the reader. You will see that making a component cacheable is not that difficult,
provided you can work out what the input is.

When you have finished your implementation of the cacheable zip generator and it seems
to be working correctly, check out the companion CD. It contains the complete source
code of the cacheable generator as a reference.

You have just developed some high-performance cache-aware sitemap components. But
a more general approach for dealing with archives in Cocoon is to create a custom
protocol.

Creating a Protocol

If you look closely at your components—the zip generator and the zip reader—you can
see that they are very similar. The only real difference is that the generator uses a parser
to generate SAX events. But apart from that, they are identical.

This means that every time you want to access a zip file from one of your components,
you would be duplicating the code. Cocoon is flexible enough to offer a better
solution:You can create your own protocol. Instead of using custom components
whenever you want to extract something from an archive, you can use this new protocol
with each existing sitemap component.

After you have developed a suitable protocol, you can write zip://people/
matthew.jpg@pictures.zip or zip://
financenews.xml@http://www.newserver.com/news_2001.zip. This
protocol extracts the URI for the archive, accesses the archive, and fetches the document

 290

to be extracted. The URI format you use is zip://, followed by the path inside the
archive, followed by @, and ending with the URI for accessing the archive.

By writing your own protocol, you can extract files from archives in every sitemap
component. You could then use the new protocol with the file generator, the resource
reader, or even the xslt transformer. Of course, this makes the two new components you
developed earlier redundant. However, they are still good examples for learning how to
develop sitemap components.

All source resolving takes place using the provided SourceResolver. This central
component is passed to all sitemap components. It provides a single method, resolve,
which has exactly one argument: a string containing the URI. The result of this method
invocation is a Source object. For more information on source resolving, see Chapter 8.

How does this source resolver get to know about a custom protocol? The source resolver
uses a SourceHandler. This source handler helps the source resolver when it comes
to custom protocols. The source handler knows all the custom protocols, because these
protocols are registered with the handler.

What do you need to do to write your own protocol? You need to write your own Avalon
component that implements the SourceFactory protocol, shown in Listing 9.18. This
factory must then be registered with the source handler. This is done in cocoon.xconf.
But before you configure something, let’s look at the implementation.

Listing 9.18 The SourceFactory Interface

package org.apache.cocoon.components.source;

import org.apache.avalon.framework.thread.ThreadSafe;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.environment.Environment;
import org.apache.cocoon.environment.Source;

import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;

public interface SourceFactory extends ThreadSafe {

 Source getSource(Environment environment, String location)
 throws ProcessingException, MalformedURLException, IOException;

 Source getSource(Environment environment, URL base, String location)
 throws ProcessingException, MalformedURLException, IOException;
}

As you can see from the listing, the source factory interface is very simple. It consists of
two methods, both called getSource, returning a Source object. They differ only in
the number of parameters.

 291

The second method with three parameters gets the current environment, a base URI, and
a string containing a relative URI to resolve. Actually, this is a legacy method that is
usually used to resolve relative locations to a base URI. But because the base URI is a
URL object that doesn’t know anything about your zip protocol, this method can never
really be invoked. However, because the source factory interface still contains this
method, you implement it simply by calling the other getSource method from within
this implementation.

All the work is done in the first getSource method with two parameters: the current
environment and the URI to resolve. Your source factory parses the URI and checks to
see whether it is valid. This means it must start with zip:// and that the @ character
must be used to separate the document name from the archive location. Because the
archive’s URI can be any URI, even HTTP or FTP, it must be resolved using the current
source resolver. The current source resolver is passed to the method by the
environment object, because in this case the environment is also a source resolver.
The whole factory is shown in Listing 9.19.

Listing 9.19 The ZipSourceFactory Class

package cxa.components.source;

import org.apache.avalon.framework.component.ComponentManager;
import org.apache.avalon.framework.component.Composable;
import org.apache.avalon.framework.logger.AbstractLoggable;
import org.apache.avalon.framework.thread.ThreadSafe;
import org.apache.cocoon.ProcessingException;
import org.apache.cocoon.components.source.SourceFactory;
import org.apache.cocoon.components.source.URLSource;
import org.apache.cocoon.environment.Environment;
import org.apache.cocoon.environment.Source;
import org.xml.sax.SAXException;

import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;

public class ZipSourceFactory
extends AbstractLoggable
implements Composable, SourceFactory, ThreadSafe {

 protected ComponentManager manager;

 public void compose(ComponentManager manager) {
 this.manager = manager;
 }

 public Source getSource(Environment environment, String location)
 throws ProcessingException, MalformedURLException, IOException {
 int separatorPos = location.indexOf('@');
 if (separatorPos == -1)
 throw new MalformedURLException("@ required in URI: " + location);
 int protocolEnd = location.indexOf("://");

 292

 if (protocolEnd == -1)
 throw new MalformedURLException("URI does not contain '://' : "

+ location);

 String documentName = location.substring(protocolEnd+3,

separatorPos);
 Source archive;
 if (environment == null) {
 archive = new URLSource(new

URL(location.substring(separatorPos+1)),
 this.manager);
 } else {
 try {
 archive =

environment.resolve(location.substring(separatorPos+1));
 } catch (SAXException sax) {
 throw new ProcessingException("Unable to resolve ");
 }
 }
 return new ZipSource(archive, documentName, this.manager);
 }

 public Source getSource(Environment environment, URL base, String

location)
 throws ProcessingException, MalformedURLException, IOException {
 return this.getSource(environment, new URL(base,

location).toExternalForm());
 }
}

You use the environment to resolve the archive’s URI. The result is a Source object.
This Source object, along with the name of the document to be extracted and the
component manager, are used to create a Source object that can be used in every
component. This Source object is implemented by the ZipSource class. We will not
provide you with the whole class, but we will show some pieces of it and explain them
directly. For the complete class listing, we suggest checking out the CD.

Listing 9.20 shows the constructor and the body of the class. The ZipSource class
implements the Source interface. It gets the document name, the archive, and the
component manager from the source factory when a new ZipSource instance is created.
All the information is stored in separate instance variables. One method of the Source
interface is the getSystemId() method, which returns the unique URI of this source.
This system identifier is created in the constructor by concatenating the archive’s URI
and the path of the document to be extracted. The complete identifier is stored in an
instance variable, too.

Listing 9.20 The ZipSource Class

package cxa.components.source;

public class ZipSource implements Source {

 293

 private String systemId;
 private Source archive;
 private ComponentManager manager;
 private String documentName;

 public ZipSource(Source archive,
 String documentName,
 ComponentManager manager)
 throws IOException {
 this.manager = manager;
 this.systemId = archive.getSystemId() + '/' + documentName;
 this.archive = archive;
 this.documentName = documentName;
 }

 public String getSystemId() {
 return this.systemId;
 }
}

Listing 9.21 shows some more methods of the Source interface implemented by the
ZipSource class. Because you do not know the length of the document beforehand,
you simply return -1 for the content length. The object needs no cleanup after it is used,
so the implementation of the recycle method is empty. The getLastModified
method should return the date when the source was last changed. You return the date
when the archive was last modified. Because the archive is a source object itself, you
need to see if the source object is a ModifiableSource, which indicates whether
the archive can change. If it is a modifiable source, you have to call the refresh
method on the archive before you can ask for the last modification date. You put the test
for a modifiable source and the call of the refresh method in a separate method called
update, because you have to call the refresh method on the archive each time you
do something with the archive.

Listing 9.21 Standard Methods of ZipSource

protected void update() {
 if (this.archive instanceof ModifiableSource) {
 ((ModifiableSource)this.archive).refresh();
 }
}

public long getLastModified() {
 this.update();
 return this.archive.getLastModified();
}

public long getContentLength() {
 return -1;
}

public void recycle() { }

 294

Only three methods are needed to complete the Source interface: getInputStream,
getInputSource, and toSAX. Let’s start with the last two. They are shown in
Listing 9.22. The implementation of getInputSource is very simple. It creates a new
InputSource object and passes the system identifier and the input stream to this new
object.

The toSAX method streams the content of the extracted document to a parser that creates
the SAX events. This code is very similar to that used for the zip generator. The only
difference is that the toSAX method has only a ContentHandler as the parameter.
This method tests to see whether this object is an XMLConsumer or a
LexicalHandler. The input for the parser is an InputSource. It is created by
calling the getInputSource method.

Listing 9.22 XML Support for the ZipSource Class

public InputSource getInputSource()
throws IOException, ProcessingException {
 InputSource newObject = new InputSource(this.getInputStream());
 newObject.setSystemId(this.systemId);
 return newObject;
}

public void toSAX(ContentHandler handler)
throws SAXException, ProcessingException
{
 Parser parser = null;
 try {
 parser = (Parser)this.manager.lookup(Parser.ROLE);

 if (handler instanceof XMLConsumer) {
 parser.setConsumer((XMLConsumer)handler);
 } else {
 parser.setContentHandler(handler);
 if (handler instanceof LexicalHandler) {
 parser.setLexicalHandler((LexicalHandler)handler);
 }
 }
 parser.parse(this.getInputSource());
 } catch (ProcessingException e){
 // Preserve original exception
 throw e;
 } catch (SAXException e) {
 // Preserve original exception
 throw e;
 } catch (Exception e){
 throw new ProcessingException("Exception during processing.", e);
 } finally {
 if (parser != null) this.manager.release(parser);
 }
}

 295

The remaining method, getInputStream, is shown in Listing 9.23. It first calls the
update method to update the archive source object and then uses the same code you
used for the zip generator to extract the document from the archive. The data of the
extracted document is again read into a byte array, and a ByteArrayInputStream
reading from this byte array is returned.

Listing 9.23 The getInputStream Method

public InputStream getInputStream()
throws IOException, ProcessingException {
 this.update();

 ZipInputStream zipStream = new

ZipInputStream(this.archive.getInputStream());
 ZipEntry document = null;
 boolean found = false;
 do {
 document = zipStream.getNextEntry();
 if (document != null) {
 if (document.getName().equals(this.documentName)) {
 found = true;
 } else {
 // go to next entry
 zipStream.closeEntry();
 }
 }
 } while (document != null && found == false);

 if (document == null)
 throw new ResourceNotFoundException("The document is not in the

archive.");

 // now we will extract the document and write it into a byte array
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 byte[] buffer = new byte[8192];
 int length = -1;
 while (zipStream.available() > 0) {
 length = zipStream.read(buffer, 0, 8192);
 if (length > 0) {
 baos.write(buffer, 0, length);
 }
 }
 zipStream.close();
 baos.flush();

 // return an input stream
 return new ByteArrayInputStream(baos.toByteArray());
}

That’s all you need to implement. Let’s review what you have done so far. You
developed a SourceFactory that provides the new zip protocol to the source
resolver. The new ZipSourceFactory creates a ZipSource object that implements
the Source interface.

 296

Now each time a URI with the zip protocol is resolved by the source resolver, it returns a
ZipSource object. This can then be used by the calling component to create SAX
events, to read from the input stream, and so on. But before you can test your component,
there is one thing left to do: configuration.

You have developed a new protocol, and now you have to tell Cocoon that it can use this
protocol. You do this by adding the protocol to the configuration of the
SourceHandler in cocoon.xconf:

<source-handler>
 <protocol name="zip" class="cxa.components.source.ZipSourceFactory"/>
</source-handler>

The source handler is an Avalon component that can be configured in cocoon.xconf. The
configuration consists of a list of custom protocols that Cocoon supports. With the
protocol element, you define your new protocol. The name attribute defines the
protocol’s scheme name, and the class attribute points to a class that implements the
SourceFactory protocol. That’s all you have to do.

You can test the protocol by using it, for example, with the file generator to read XML
documents from an archive. Or you can use it with the resource reader to read images
from the archive, or use it with the xslt transformer, and so on. The following lines show
the same example you used for your custom zip reader, but now with the use of the new
protocol:

<map:pipeline>
 <map:match pattern="zipread">
 <map:read mime-type="image/jpg" src="zip://test.jpg@images.zip"/>
 </map:match>
</map:pipeline>

With the protocol, you added the same functionality you had beforehand with the custom
reader. But the protocol can now be used everywhere. Because most Cocoon components
are already cache-aware, you do not need to worry about caching with a custom protocol,
because it works out of the box. For example, the file generator and the resource reader
use the last modification date provided by the Source object for caching.

So you might well get the idea that everything should be implemented as a protocol and
that writing additional generators or readers is a very rare task. A custom protocol should
be preferred over a generator or reader only if the protocol can be used for more than one
component type. For example, if a protocol can be used only for a generator and not for a
transformer or a reader or any other component, it is better to write a custom
generator/reader instead.

You have learned from this example that extending Cocoon is quite simple in most cases.
It often comes down to implementing an interface and configuring something somewhere.

 297

Now that you have added a component (or better, a protocol) to the system, we will look
at adding your own custom component.

Writing a Mail Component

When we developed the zip protocol, we mentioned that one main advantage of creating
a protocol is that it can be used everywhere a URI is allowed. In fact, a protocol is a
simple example of Separation of Concerns (SoC). The zip reader and the zip generator
were developed for one special purpose: to read from an archive. You soon discovered
that this resulted in duplicate code and very restricted use of this feature, because it is
unavailable for other components such as transformers.

The reader and the generator have at least two concerns: their main function as a reader
or generator and interpreting a new URI scheme. By providing the custom protocol, you
separated the concerns and minimized the effort and the components needed for this
purpose.

Another example of a not-so-sophisticated software architecture is the mail transformer
you developed in this chapter. This transformer also has two purposes: interpreting the
tags of the SAX stream to collect the information for sending an email, and sending of
the email itself. If you want to send an email from any other component, such as an
action, you have to duplicate code and configuration. Remember that you need at least
the mail host to send emails.

This leads us to the next example: a mail component. This is a custom component that,
like the parser, is available to all the other components in Cocoon. This component’s
main task is sending emails. Later in this chapter you will adapt the transformer to use
this mail component. By providing this centralized instance, you separate concerns and
make the configuration a lot easier, because there is only one place to configure the
parameters needed to send emails. In addition, you get the benefit of using this mail
component in other components as well, such as in an action.

The Mail Component

Let’s start with the design of the mail component. It will consist of only one method,
sendMail. This method has three parameters: the email’s receiver, subject, and body as
strings. Listing 9.24 shows the interface for this component.

Listing 9.24 The Mail Component

package cxa.component.mail;

import org.apache.avalon.framework.component.Component;

public interface MailComponent
extends Component
{
 String ROLE = "cxa.component.mail.MailComponent";

 298

 boolean sendMail(String receiver, String subject, String body);
}

Because the component has only one method, the implementation can be ThreadSafe.
The component needs a configuration for the mail host and the from address to use for
sending emails. So the component implements the Parameterizable interface.
Listing 9.25 shows the whole implementation of the mail component.

Listing 9.25 The Mail Component Implementation

package cxa.component.mail;

import org.apache.avalon.framework.parameters.Parameterizable;
import org.apache.avalon.framework.parameters.Parameters;
import org.apache.avalon.framework.parameters.ParameterException;
import org.apache.avalon.framework.thread.ThreadSafe;
import java.util.Properties;

import javax.mail.*;
import javax.mail.internet.*;

public class MailComponentImpl
implements MailComponent, Parameterizable, ThreadSafe{

 protected String mailHost;
 protected String fromAddress;

 public void parameterize(Parameters parameters)
 throws ParameterException {
 this.mailHost = parameters.getParameter("mailhost");
 this.fromAddress = parameters.getParameter("from");
 }

 public boolean sendMail(String receiver, String subject, String body) {
 try {
 Properties props = new Properties();
 props.put("mail.smtp.host", this.mailHost);
 Session mailSession = Session.getInstance(props, null);

 MimeMessage pm = new MimeMessage(mailSession);

 // set from
 pm.setFrom(new InternetAddress(this.fromAddress));
 // set to
 pm.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(receiver));
 // set subject
 pm.setSubject(subject);
 // set date
 pm.setSentDate(new Date());
 // set content

pm.setText(body);
 // send mail

 299

 Transport trans = mailSession.getTransport("smtp");
 Transport.send(pm);
 // success
 return true;
 } catch (Exception any) {
 // failure
 return false;
 }
 }
}

The code for the sending of the email is transferred directly from the mail transformer to
the component. Neither the interface of the mail component nor the implementation is
very sophisticated. For a real-world custom component, the interface is really unsuitable,
because it is not flexible enough. But as soon as you know more about using custom
components in Cocoon, you can turn your mail component into something more powerful.
After all, the components developed in this chapter are now yours to use and adapt as
needed.

Adding Roles

Now you have developed the component. But how do you tell Cocoon about it? Do you
remember the introduction of roles from Chapter 8? We discussed that the configuration
of a component consists of two parts. The first one makes the role available to the
application, and the second one sets the used implementation for a role.

You already know that this second configuration takes place in cocoon.xconf. But where
can you add new roles? Most roles that are available in Cocoon are defined in a file
called cocoon.roles. This file is contained in Cocoon’s JAR file. It is an XML document
that looks like this:

<role-list>
 <role name="org.apache.cocoon.components.parser.Parser"
 shorthand="parser"
 default-class="org.apache.cocoon.components.parser.JaxpParser"/>

...more roles...
</role-list>

For each role, an element with the name role is listed in this file. The attribute name is
the name of the role, and the default-class is the default implementation for this
component. This can be overridden in cocoon.xconf. The attribute shorthand is also
used in cocoon.xconf as a unique identifier to address this role:

<parser class="org.apache.cocoon.components.parser.XercesParser">
 ...configuration...
</parser>

 300

All you have to do is add your role to the list. But wait a minute. The cocoon.roles file is
inside a JAR file in the Cocoon distribution. Altering this file would require you to alter
the JAR file and to directly manipulate the Cocoon distribution. Because this is not a
viable solution, there is, of course, a better one: It is possible to tell Cocoon to look for a
second file containing role definitions. You do this by adding the attribute user-roles
to the root element of cocoon.xconf:

<cocoon version="2.0" user-roles="myroles.xconf">
 ...
</cocoon>

Now you can change the file myroles.xconf and add all your custom roles here. Let’s
start with a role for the mail component:

<role-list>
 <role name="cxa.component.mail.MailComponent"
 shorthand="mail"
 default-class="cxa.component.mail.MailComponentImpl"/>
</role-list>

Now you can use this role with the shorthand mail to configure the component in
cocoon.xconf by adding these lines and changing the settings to your environment:

<mail>
 <parameter name="mailhost" value="mymailhost"/>
 <parameter name="from" value="from@myhost.com"/>
</mail>

After restarting Cocoon, you can use this mail component like any other component. You
can look it up using MailComponent.ROLE and can use it to send emails.

Using the Mail Component

The simplest way to test the mail component is to change the mail transformer. Just add
an import statement for the cxa.component.mail package to the transformer and
change the method for the endElement events, as shown in Listing 9.26.

Listing 9.26 Using the Mail Component

public void endElement(String uri, String name, String raw)
throws SAXException {
 if (uri != null && uri.equals(NAMESPACE)) {
 if (name.equals(SENDMAIL_ELEMENT) == true) {
 String text;
 MailComponent mail = null;
 try {
 mail = (MailComponent)

this.manager.lookup(MailComponent.ROLE);

 301

 if (mail.sendMail(this.toAddress.toString(),
 this.subject.toString(),
 this.body.toString())) {
 text = "Sending mail to " + this.toAddress + " was

successful.";
 } else {
 text = "Sending mail to " + this.toAddress + " failed!";
 }
 // create SAX events for success/failure
 super.startElement(NAMESPACE, "sendmail", "sendmail", new
AttributesImpl());
 super.characters(text.toCharArray(), 0, text.length());
 super.endElement(NAMESPACE, "sendmail", "sendmail");

 } finally {
 this.manager.release(mail);
 }
 } else if (name.equals(MAILTO_ELEMENT) == true) {
 // mailto received
 this.mode = MODE_NONE;
 } else if (name.equals(MAILSUBJECT_ELEMENT) == true) {
 this.mode = MODE_NONE;
 } else if (name.equals(MAILBODY_ELEMENT) == true) {
 this.mode = MODE_NONE;
 } else {
 throw new SAXException("Unknown element " + name);
 }
 } else {
 // not for us
 super.endElement(uri, name, raw);
 }
}

By using the mail component, you have created cleaner code and can change the
implementation of the email component to meet new challenges.

Developing and using custom components with Cocoon is simple. It consists of these
steps:

1. Defining the role by specifying a Java interface.

2. Creating a default implementation for the role.

3. Adding the role to the user roles file.

4. Configuring the role in cocoon.xconf.

5. Using the component.

This is only a checklist, not a strict set of rules. There might be components that have
only one static implementation, so you do not need to create an interface for it. Instead,
you can use the implementation directly as the role definition as well. There are other

 302

cases, such as utility classes, in which you might not need a configuration or the Avalon
component life-cycle, so you would not need an entry in cocoon.xconf. A good start for
writing roles is to have a look at the existing roles and their implementations inside
Cocoon. Or you can check the Avalon home page. It contains some notes and a tutorial
for writing components.

Wrapping Up the Developer Perspective

Throughout this chapter, you have developed several components for Cocoon. You
started by exploring the sitemap components. This covered actions, selectors, generators,
readers, and transformers. Then you fine-tuned these components by writing cache-aware
components and providing your own protocol to use with Cocoon. You finished by
writing and adding your own mail component.

As you saw in this chapter, developing components for Cocoon is often very simple. In
most cases, it comes down to implementing an interface and, even simpler, extending a
provided abstract class.

The best way to get to know Cocoon is to look into the provided source code. Just start
by exploring some simple classes such as FileGenerator and see how they are
implemented. From there, start to explore the classes and components used by the file
generator and so forth. You can learn a lot from the source code. It helps you understand
the concepts behind Cocoon. You will get a better idea of when to use what and also be
able to decide if you really need a custom component or if the needed component is
already contained in the Cocoon distribution. Developing additional components will also
hopefully lead to your becoming a member of the Cocoon developer community and
donating some of the things you have developed.

In the next chapter, we will return to our sample application, the news portal, and will put
what you have learned to work. We will also delve into a topic that will help you extend
your application with new functionality, Extensible Server Pages (XSP).

 303

Chapter 10. Cocoon News Portal: Advanced Version

The last two chapters showed you how to develop new Java components for Cocoon.
Adding components lets you extend Cocoon in many different ways to meet your specific
needs. Because of how Cocoon is designed, it is very easy to drop these new components
into a given Cocoon installation just by adding them to the sitemap and deploying the
compile Java classes. However, as is often the case with Cocoon, there is another way to
extend Cocoon: XSP.

The first part of this chapter looks at XSP. In the second part, you use this knowledge to
extend the portal from Chapter 7, “Cocoon News Portal: Extended Version.” The goal of
this chapter is to enhance the previous version of the portal and build a more-advanced
version.

Up to this point, the different portal versions were built without your having to code
anything in Java. The advanced version of the portal requires some knowledge of Java.
When you build a portal for a real-world scenario, you need to adapt to the particular
environment the portal is running in. The most common way of doing this is by writing
new components in Java. As you will see, XSP provides a way of writing Java code using
a scripting-based approach.

In addition to writing additional code in Java, an advanced portal also needs a way to
track the user, so we will look at how to use a session to store information about the
portal user. We will also introduce two functions that you often find in a portal: the
last-logged-in function and a greeting message. This message will be a randomly selected
tip on using Cocoon, taken from the FAQ.

Extensible Server Pages (XSP)

If you’re already familiar with Cocoon, especially with the earlier versions, you might
still be waiting for one important topic: Extensible Server Pages (XSP). Because you
need knowledge of Java in order to use XSP, we did not think this topic was suitable for
the more user-oriented chapters, because it is possible to develop web applications with
Cocoon without any knowledge of Java.

 304

Because XSP is a complex topic that could fill a whole book by itself, we decided that the
easiest way to present the concepts behind XSP was to use the portal as an example.
After an introduction to XSP, we will provide some information on when you could or
should use XSP.

So what is XSP? XSP is a method for creating dynamic content. It is very similar to Java
Server Pages (JSP) and Active Server Pages (ASP), but it aims to be a scripting language
that is tightly integrated into Cocoon. The dynamic content is described by an XSP
document, which is an XML document with special markup elements.

The XSP document is processed by a special Cocoon generator: the serverpages
generator. So an XSP document is the starting point for an XML processing pipeline. The
serverpages generator transforms the special markup into a Java class that implements the
Generator interface. After the component has been created from the XSP markup, it is
treated as a normal generator.

The next time the same XSP document is processed, the generated generator is used, so
the XSP actually is compiled only once.

Hello World with XSP

Before we look more closely at XSP processing, let’s start with a simple example—the
great Hello World example we have neglected over the last few chapters! Here it is
written in XSP:

<xsp:page xmlns:xsp="http://apache.org/xsp">
 <xsp:logic>
 String text="Hello World";
 </xsp:logic>
 <document>
 <xsp:expr>text</xsp:expr>
 </document>
</xsp:page>

After saving the XML into a document called helloworld.xsp in the context directory of
the Cocoon web application, you need to add the following pipeline to your sitemap.
After you restart the servlet engine, point your browser to
http://localhost:8080/cocoon/helloworld. If everything works correctly, you
should see those familiar words.

<map:pipeline>
 <map:match pattern="helloworld">
 <map:generate src="helloworld.xsp" type="serverpages"/>
 <map:serialize type="xml"/>
 </map:match>
</map:pipeline>

 305

XSP uses its own namespace: http://apache.org/xsp. The special markup for XSP is
connected to this namespace. From now on, you will use the short form of prefixes to
indicate that an element is in the XSP namespace, such as xsp:logic. An XSP document
always starts with the root tag xsp:page.

The xsp:logic element wraps the actual Java code. This element can occur as often as is
needed inside an XSP file. For example, it is possible to declare some variables inside
one xsp:logic block and then use them later in the XSP document. You have to
distinguish between top-level xsp:logic elements and nested ones. A top-level element
that is a direct child of the xsp:page element can declare variables. If you want to
compare it with a usual Java class, all this “code” is outside any method.

A nested xsp:logic element runs in the context of a method, so it is possible to use any
Java statement there, such as loops and method calls.

The xsp:expr element evaluates the enclosed expression like the toString() method
usually does for objects. The expression can even consist of complex calculations such as
((a * 15) / 3) + 5.

Let’s look at another example. You will count from a minimum value to a maximum
value and put each number in its own number element. At the end, you will add an
element called date with the current date and time:

<xsp:page xmlns:xsp="http://apache.org/xsp">
 <xsp:logic>
 int min = 1;
 int max = 5;
 </xsp:logic>
 <document>
 <xsp:logic>
 for(int i = min; i <= max; i++) {
 <number><xsp:expr>i</xsp:expr></number>
 }
 </xsp:logic>
 <date><xsp:expr>new Date()</xsp:expr></date>
 </document>
</xsp:page>

The top-level xsp:logic element defines two constants, min and max. Inside the
document element is a second xsp:logic, which contains a loop starting at the value
given by the variable min and ending with max. Remember that this is an XML document,
so you have to write the comparison <= as <= (or you could use a CDATA section).
Inside the loop is the number element, and inside this element xsp:expr evaluates the
current value of the index variable i.

http://apache.org/xsp

 306

The output XML of this XSP document is the root element document, which has five
child nodes containing the element number with the numbers 1 to 5. The root element
contains the date element with the current date and time.

Defining dynamic content this way can get complicated and verbose very quickly. To
write maintainable and perhaps reusable XSP documents, it’s important to understand the
concept of logicsheets.

What Are Logicsheets?

A logicsheet is a library of custom XSP elements. Elements from the library can be
referenced inside an XML document, much in the same way transformer functionality is
referenced using tags that the transformer understands.

When the logicsheet is applied to an XML document, the referenced elements are
interpreted (or better transformed) by the logicsheet. Whenever the logicsheet encounters
such an element, the element is consumed. The element is removed from the SAX stream
and is replaced with the result of the corresponding function from the library.

Whereas a transformer is written totally in Java, an XSP logicsheet is implemented as a
stylesheet. This stylesheet can be changed during runtime without any problems, and
XSP can use it immediately. In addition, the logicsheet can be registered, so it is applied
automatically to the XSP document. In contrast, a transformer needs to be explicitly
added to the XML processing pipeline in the sitemap.

Let’s develop a simple logicsheet with two functions. The random function calculates a
random number between a minimum and maximum value (similar to the action from the

preceding chapter). The second function inserts the current date and time. Here is
the stylesheet that implements the functionality:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsp="http://apache.org/xsp"
 xmlns:cxa="http://cxa/logicsheet">

<xsl:template match="cxa:date">
 <xsp:expr>new Date()</xsp:expr>
</xsl:template>

<xsl:template match="cxa:random">
 <xsp:logic>
 int min = <xsl:value-of select="@min"/>;
 int max = <xsl:value-of select="@max"/>;
 java.util.Random generator = new

java.util.Random(System.currentTimeMillis()
);
 int random = generator.nextInt(max - min + 1) + min;
 </xsp:logic>
 <xsp:expr>random</xsp:expr>

 307

</xsl:template>

<xsl:template match="@*|*|text()|processing-instruction()">
 <xsl:copy>
 <xsl:apply-templates

select="@*|*|text()|processing-instruction()"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

This logicsheet matches against two nodes, both having the namespace
http://cxa/logicsheet. The stylesheet replaces the date element with the current date
and time. The random element is replaced with a random number. This number is
between the minimum value set by the attribute min and the maximum value set by the
attribute max. The last rule in the stylesheet simply copies all the other elements
unchanged. Let’s have a look at an example using this logicsheet:

<xsp:page xmlns:xsp="http://apache.org/xsp"
 xmlns:cxa="http://cxa/logicsheet">
 <document>
 <random>
 <cxa:random min="1" max="100"/>
 </random>
 <date>
 <cxa:date/>
 </date>
 </document>
</xsp:page>

If you want to use a logicsheet, you must know which namespace it uses. So you add the
namespace prefix cxa. In the XSP document, you simply use the two elements
cxa:random and cxa:date. But how does the XSP engine know about your stylesheet?
There are two possibilities. The first one is to register the logicsheet as a built-in
logicsheet. The second solution is to add a reference to the logicsheet to the XSP
document that will use the logicsheet. We will look at this solution later.

So how do you define a built-in logicsheet? cocoon.xconf contains the configuration for
the various components used in Cocoon. Among these components is a component
responsible for processing XSP documents—xsp-language. You can find this
component in cocoon.xconf inside the markup-languages element:

<markup-languages>
 <xsp-language name="xsp">
 <parameter name="prefix" value="xsp"/>
 <parameter name="uri" value="http://apache.org/xsp"/>

 <!-- Defines the XSP Core logicsheet for the Java language -->
 <target-language name="java">
 <parameter name="core-logicsheet"

 308

value="resource://org/apache/cocoon/components/language/markup/xsp/java

/xsp.xsl"/>

 <builtin-logicsheet>
 <parameter name="prefix" value="xsp-request"/>
 <parameter name="uri"

value="http://apache.org/xsp/request/2.0"/>
 <parameter name="href"

value="resource://org/apache/cocoon/components/language/markup/xsp/
java/
request.xsl"/>

 </builtin-logicsheet>
 <builtin-logicsheet>
 <parameter name="prefix" value="session"/>
 <parameter name="uri"

value="http://apache.org/xsp/session/2.0"/>
 <parameter name="href"

value="resource://org/apache/cocoon/components/language/markup/xsp/
java/

session.xsl"/>
 </builtin-logicsheet>
 ...
 </xsp-language>
</markup-languages>

Among the configurations for the xsp-language itself is a list of the built-in logicsheets,
each one indicated by the element builtin-logicsheet. The preceding code excerpt
lists two logicsheets that are in the Cocoon distribution. We will have a closer look at
them later in this chapter. But for now, let’s add the logicsheet by adding these lines:

<builtin-logicsheet>
 <parameter name="prefix" value="cxa"/>
 <parameter name="uri" value="http://cxa/logicsheet"/>
 <parameter name="href" value="context://logicsheet.xsl"/>
</builtin-logicsheet>

Each built-in logicsheet gets three parameters. The first two are the namespace prefix
(cxa) and the namespace URI (http://cxa/logicsheet) used in the logicsheet for the
handled elements in the logicsheet. The third parameter is the location of the logicsheet.
This example uses the special context protocol, which searches for the logicsheets in the
context directory of the Cocoon web application. And that’s all you have to configure.
From now on, your logicsheet is available in all XSP documents.

Let’s test this example. Save the XSP document as logicsheettest.xsp and the logicsheet
as logicsheet.xsl in the Cocoon context directory, add the following pipeline to the
sitemap, and invoke the example:

<map:pipeline>

 309

 <map:match pattern="logicsheettest">
 <map:generate src="logicsheettest.xsp" type="serverpages"/>
 <map:serialize type="xml"/>
 </map:match>
</map:pipeline>

Because built-in logicsheets are available to all XSP documents, they should be generic
enough that they can be used by several documents. If you want to create special-purpose
logicsheets that should be used by only one or two documents, you can specify these
logicsheets inside an XSP document instead of adding built-in logicsheets.

The processing instruction xml-logicsheet at the beginning of an XSP document has
one attribute, href, that points to the location of the logicsheet. It is possible to add as
many processing instructions as required:

<?xml-logicsheet href="logicsheet.xml"?>

Instead of adding your logicsheet to cocoon.xconf, you could use this processing
instruction at the beginning of the XSP document and create the same effect. Of course,
you can use any URI in the href attribute, including custom protocols such as context:
and resource:.

As you saw in cocoon.xconf, Cocoon already contains some built-in XSP logicsheets.
Using these libraries, it is very easy to access request information, maintain sessions, and
query a database. You will use some of these logicsheets later in this chapter. First, let’s
take a closer look at XSP’s pros and cons.

Lights, Camera, Action: When to Use XSP

In earlier versions of Cocoon, XSP was the only alternative for defining dynamic content.
Therefore, it still creates some interest in the Cocoon community. But with Cocoon’s
current architecture and the many different types of components, such as transformers
and actions, XSP is losing some of this interest.

In fact, XSP has some disadvantages. One of them is that the skill required to use XSP is
greater than for using other components, such as transformers. XSP requires at least basic
knowledge of Java programming. Because a special generator is responsible for
interpreting the XSP tags, it is very easy to mix content and logic into a single XSP
document.

For production environments, XSP is not the best solution when it comes to performance.
As a default, it does not support the caching algorithm. Because it is possible to write any
Java statement inside the XSP document, the serverpages generator cannot decide which
XSP document is cache-aware. Consider a simple XSP document that “prints” the current
date and time. If this were cached, all clients would see only the date and time of the first
invocation. However, if you are an experienced XSP and Cocoon developer, you can

 310

make your XSP document cache-aware by implementing the Cacheable interface,
introduced in the preceding chapter.

Another minor performance problem is compiling the XSP document into a generator.
This process is rather slow. But because this happens only once for each XSP document,
it is unimportant.

A logicsheet has one advantage over a custom transformer: It is applied automatically to
the XSP document. You do not have to include a custom transformer in the processing
pipeline. Using a new logicsheet inside an XSP document does not require the
administrator to change the sitemap or any other configuration file. It can simply be used.
However, if a new transformer is used, the sitemap containing the XML processing
pipeline has to be adjusted.

On the other hand, a logicsheet has two disadvantages compared to a transformer. First,
an XSP logicsheet requires the serverpages generator. Without this special generator, the
logicsheet cannot be applied to the elements. So it is not possible to use a logicsheet with
a different generator that limits the use of logicsheets. Second, writing a logicsheet is a
subtle task, because it is very easy to create conflicts between logicsheets that make the
XSP document unusable. For example, if an XSP document uses two logicsheets, and
both declare a variable with the same name, a compilation error occurs, because a
variable can be declared only once.

“So why use XSP, then?” you might ask. If you don’t want to program Java, some things
are currently possible only using XSP, such as maintaining a session for the current user.
For certain functionality, you can therefore either use available XSP logicsheets or write
your own generator, transformer, or action in Java.

Another advantage of XSP is rapid prototyping. The XSP document is transformed
dynamically during runtime into a Java class or, more precisely, into a generator. So
writing your own generator and changing it are possible with XSP without the need to
deploy Java classes and restart the servlet engine. A simple change in the XSP document
is sufficient.

Developers use this approach to create their own generator. They use XSP to prototype it.
When they are happy with the result, they use the generated class and maintain that from
then on as a custom generator and forget about the XSP document.

When compared to other scripting languages, XSP has the advantage that the markup is
not hard-coded into the scripting engine. Instead, even the core markup, such as
xsp:page, is transformed by a stylesheet. This loose coupling makes this approach very
flexible and maintainable.

Whether you want to use XSP is up to you. It probably depends on the exact solution you
are building. Here are some additional points you should consider when deciding if XSP
suits your needs:

 311

• Imports can’t be specified in the logicsheets, so classes should be named to
include their package names. Otherwise, a compile error will occur.

• Exceptions other than ProcessingException, SAXException, and IOException
must be caught explicitly by including a try-catch block in the XSP code.

• Errors aren’t known until runtime, when the generated Java file is compiled. With
custom generators, errors are known at compile time.

We should also point out that some of the functionality provided by XSP is slowly being
replaced by components that do the same thing. As we will show you in Chapter 12,
“Cocoon: Weaving the Future,” there is an alternative to XSP when it comes to session
handling. But session handling is a good reminder of what this chapter is about:
developing your portal. So let’s start with this now.

Extending the Extended Portal

In Chapter 7, you developed a simple portal where the user can log in and receive a
personalized news feed. In this chapter you will use this portal as a base and extend it by
introducing the concept of a session to store information about the user on the server.
You will also rewrite most of the portal to use XSP and then later add new functionality
to the portal.

Adding Sessions

A common feature of web solutions is the concept of sessions. A session allows the
application on the server to store information about the current user accessing the
application. Applications are forced to do this themselves, because the HTTP protocol is
stateless.

When a web application built in Cocoon decides it needs session storage, it asks Cocoon
to create a session for the current user. If no session currently exists for this user, a new
session is created. Otherwise, the old one is used instead.

This session is a Java object that offers methods to store and retrieve any other Java
object using a key. The stored objects are called attributes, so the corresponding methods
of the session are named getAttribute() and setAttribute().

Your portal will use the session to store the user’s name and his preferences after he logs
in. This eliminates the need to fetch the data from the database each time the user
requests the portal.

After a session is created, Cocoon can check an incoming request to see if it is from a
user who already has a session. If the user has a session, the web application can directly
use this session and get the information stored in it from an earlier request.

When the session is no longer needed, it has to be destroyed programmatically by the
web application. Usually when the user invokes the “log off” function, the server frees

 312

the information. From now on, each incoming request is no longer connected to a session,
because it has been deleted.

If the user does not select the “log off” function, Cocoon offers the possibility of defining
a period of inactivity after which Cocoon automatically destroys the session.

How can Cocoon detect whether a request belongs to a session? Because Cocoon runs in
an environment such as a servlet engine, it uses the features of this environment. Servlet
engines generally use two methods to maintain sessions: cookies or URI rewriting.

The default is usually to use cookies, because the developer of the web application does
not need to do anything special to use them. When a new session is created, a cookie is
sent to the client that contains a unique handle for the session. Because a cookie is sent
back to the server by the client with each new request, it is very easy for the server to
then find the correct session.

The second method, URI rewriting, has the advantage that no information is stored on the
client in the form of a cookie. But it has the disadvantage that the developer of the web
application has to take care of the URI rewriting. When this method is used, each link or
reference contained in the document that is sent back to the client is postfixed with a
unique handle for the session. For example, when the link “portal” is used in an HTML
document, it is rewritten by the web application as something like
portal;jsessionid=524AF3. So when the user selects this link, the URI with this
special information is sent back to the server, which extracts the information to get the
corresponding session.

This method is called URI rewriting, because the correct URI “portal” must be rewritten
by the web application as portal;jsessionid=524AF3. Unfortunately, this does not
happen automatically. Do you remember the Response object that is available for each
request inside Cocoon? This object offers a method that gets a URI as the argument and
returns the rewritten URI.

Your portal example will not use URI rewriting, because it is complex enough. So this
version will use cookies. But this could be the first part where you can practice later on
yourself.

But even to create and maintain a session inside your portal, you need to write Java code,
because the session is a Java object. But don’t fear. You will not develop new
components, as you did in the preceding chapter. Instead, you will use XSP. You’ll get a
little help from XSP, because Cocoon already offers a logicsheet for session handling: the
session logicsheet. You will use two functions of this built-in logicsheet.

The session:get-attribute function gets the object stored in the session attribute
under the given name and converts it to XML. The value of the attribute replaces the
session:get-attribute element. The session:set-attribute function sets the value
for the attribute with the given name.

 313

The following fragment shows these two functions, a third one for ending a session, and
the namespace and prefix used for this built-in logicsheet. Of course, the session
logicsheet offers more functions than these two. You can find more information in the
provided documentation on the CD and in the logicsheet’s source, also contained on the
CD.

Namespace: http://apache.org/xsp/session/2.0
Prefix: session:

<session:get-attribute name="name of attribute"/>
<session:set-attribute name="name of attribute">
 value
</session:set-attribute>
<session:invalidate/>

Cocoon offers a second logicsheet that helps you: the request logicsheet. As the name
implies, this logicsheet contains some functions for getting information from the request:
the request parameters, the URI requested from the client, and so on. The following code
shows the used namespace and prefix for this built-in logicsheet:

Request Logicsheet
Namespace. http://apache.org/xsp/request/2.0
Prefix: xsp-request

<xsp-request:get-parameter name="name of request parameter"/>

Again, the request logicsheet offers more than just the xsp-request:get-parameter
function. You will find more information in the documentation and source on the CD.

So you already know two logicsheets that will help you. With these two, you will develop
most parts of the session and request handling. But Cocoon offers even more logicsheets.

Database Queries with XSP

Whenever you fetched data from a database in the last chapters, you used the sql
transformer and a database connection configured in cocoon.xconf for this purpose.

You will now use a different approach. Cocoon already contains a logicsheet that
performs nearly the same tasks as the sql transformer. It’s called the esql logicsheet. This
logicsheet is very complex and powerful. It offers even more possibilities than the sql
transformer. We will focus on only some of the functions. The complete description can
be found in the documentation on the CD or in the logicsheet’s source. The following
shows a standard use of the logicsheet for a database fetch:

Namespace: http://apache.org/cocoon/SQL/v2
Prefix: eqsl

 314

<esql:connection>
 <esql:pool>portal</esql:pool>
 <esql:execute-query>
 <esql:query>
 SQL STATEMENT
 </esql:query>
 <esql:results>
 <esql:row-results>
 <eqsl:get-string column="id"/>
 </esql:row-results>
 </esql:results>
 </esql:execute-query>
</esql:connection>

The esql:connection element starts the database command. The nested esql:pool
element tells the esql logicsheet which connection it should use. The element’s content is
the name used for the configuration in cocoon.xconf.

The actual database fetch starts with the esql:execute-query element. This is very
similar to the sql transformer notation. The nested esql:query element contains the SQL
statement. If a result is fetched, the esql logicsheet evaluates the branch contained in the
esql:results element. If no result is fetched, the elements contained there are never
evaluated.

For each fetched row, the esql:row-results element is executed, and the contained
elements are included in the XML document. The preceding example uses the
eqsl:get-string element to fetch the value of one distinct column named id. So, for
each fetched row, the value of this column is added to the generated document.

If you are interested in the complete functionality available using esql, we refer you to the
documentation contained in the Cocoon distribution.

Building the Portal with XSP

Now you have everything ready to start your advanced portal. To remind you of what you
want to do, here is an overview. You will develop a login document in which the user can
enter his name and password. This document invokes the portal document.

The portal document authenticates the user against a SQL database. If the user is known
and if the password is valid, the portal document displays this user’s portal. If for any
reason the user cannot be authenticated, a message is displayed stating this.

From the portal document, the user can either log out of the portal or enter the editfeeds
document. The editfeeds document displays all the currently selected news-feeds, and the
user can delete a news feed or add new ones.

 315

The Start Document

You remember the start document from Chapter 7. It contains a form with a text field for
the username and a text field for the password. In addition, the portal document is
invoked when this form is submitted from the client.

You can use the XML and XSL documents from Chapter 7 with two slight modifi-cations.
The XML document is now an XSP document, so you have the root element xsp:page.
But you don’t use any XSP functionality.

<xsp:page xmlns:xsp="http://apache.org/xsp">

<start>
 <pipeline>portal</pipeline>
 <idfield>id</idfield>
 <passfield>password</passfield>
</start>

</xsp:page>

The second modification is a message for a new predefined user to the stylesheet. We do
not show the stylesheet here because it is basically the same as in Chapter 7. (But you can
find the whole portal you are building in this chapter on the CD.)

The start document invokes the portal document and sends the values of the form with
the request to authenticate the user.

Extending the Custom Logicsheet

You want to use sessions to store information about an authenticated user, so you need a
way to create a session. Unfortunately, the session logicsheet does not help you here, so
you have to write this function yourself.

For this, you will extend the logicsheet started earlier in this chapter. You will add a new
function called cxa:create-session. The template looks like this:

<xsl:template match="cxa:create-session">
 <xsp:logic>

org.apache.cocoon.environment.ObjectModelHelper.getRequest(objectM
odel

).getSession(true);
 </xsp:logic>
</xsl:template>

You simply get the Request object from the object model and get the session object
using the getSession method with the Boolean argument true. This argument indicates

 316

that if no session exists for the user, a new one is to be created. In case you have
forgotten the details of the object model and the request object, take a look at Chapter 8,
“A Developer’s Look at the Cocoon Architecture.” We will be here waiting when you get
back.

In addition to authenticating the user, you want to protect your documents. If a user is not
authenticated, it should not be possible to get at the content of the portal or the editfeeds
document. You will implement this by testing inside these two documents to see if a
session for the user exists.

If a session exists, the user is authenticated, and you can display the portal or the edit
document. If the user is not authenticated, you will only display a message that he is not
allowed to see this document.

So, how do you test to see whether a session exists? In Java code, this is very easy. You
can simply ask the Request object if a session is present by calling the getSession()
method with the Boolean argument false. So you could simply use this inside your XSP
documents to test whether a session exists.

But to show how you can use XSP logicsheets, we have added another element to the
logicsheet that does the tests for you:

<xsl:template match="cxa:if-session">
 <xsp:logic>
 <xsl:choose>
 <xsl:when test="not(@test) or @test = 'true'">
 if (org.apache.cocoon.environment.ObjectModelHelper.
 getRequest(objectModel).getSession(false) != null) {
 </xsl:when>
 <xsl:otherwise>
 if (org.apache.cocoon.environment.ObjectModelHelper.
 getRequest(objectModel).getSession(false) == null) {
 </xsl:otherwise>
 </xsl:choose>
 </xsp:logic>

 <xsl:apply-templates/>

 <xsp:logic>
 }
 </xsp:logic>
</xsl:template>

The cxa:if-session function tests whether a session exists and executes the elements
contained in this element if the test is successful. The function is implemented by getting
the Request object from the object model and trying to get the session from the Request
object. Let’s have a look at a short example:

 317

<cxa:if-session>
 Yes
</cxa:if-session>
<cxa:if-session test="false">
 No
</cxa:if-session>

When this code is processed by your custom logicsheet, the whole block is replaced with
either the text Yes or No, depending a session’s existence. With the attribute test and the
value false, the logic is reversed, which means that the nested elements are executed if
no session exists.

With these two functions, you can convert the portal example to XSP, so let’s continue
with the portal document.

The Portal Document

In Chapter 7, you used a combination of several stylesheets, the sql transformer, and the
cinclude transformer to authenticate the user, fetch the news feeds, and include the news
in the portal view. You will now rewrite this rather complex XML pipeline as a very
simple one that uses XSP and the previously introduced logicsheets.

The first thing you do is test whether a session already exists, because you want the
authentication to be done only if no session is available. You use the cxa:if-session
element to do this:

<xsp:page xmlns:xsp="http://apache.org/xsp"
 xmlns:xsp-request="http://apache.org/xsp/request/2.0"
 xmlns:esql="http://apache.org/cocoon/SQL/v2"
 xmlns:session="http://apache.org/xsp/session/2.0"
 xmlns:cxa="http://cxa/logicsheet">

<document>
 <cxa:if-session test="false">
 <esql:connection>
 <esql:pool>portal</esql:pool>
 <esql:execute-query>
 <esql:query>
 select * from PORTALUSER_TABLE
 where id = '<xsp-request:get-parameter name="id"/>'
 and password = '<xsp-request:get-parameter

name="password"/>'
 </esql:query>
 <esql:results>
 <cxa:create-session/>
 <esql:row-results>
 <session:set-attribute name="id">
 <esql:get-string column="id"/>
 </session:set-attribute>
 <session:set-attribute name="color">
 <esql:get-string column="color"/>

 318

 </session:set-attribute>
 </esql:row-results>
 </esql:results>
 </esql:execute-query>
 </esql:connection>
 </cxa:if-session>
</document>
</xsp:page>

If no session is available, you use the esql logicsheet to fetch the data from the database.
Because this document is invoked from the start document, the request contains two
parameters, id and password. You will use this to look up the user in the database.

If a result is available, which means that the username and password are valid, a session
is created by calling cxa:create-session. Each value fetched from the database is
written to a separate attribute in the session, and the id, password, and color are stored.

The first time this portal document is requested, or when no session is available, this
document tries to authenticate the user and then stores the information in the session.

The next step for the portal document is to present the portal, which means that it has to
fetch the configured news feeds from the database and get the news from moreover.com.
You get the news using the SourceResolver, as you did in Chapters 8 and 9.

<cxa:if-session test="true">
 <xsp:logic>
 org.apache.cocoon.environment.Source source;
 org.apache.cocoon.xml.IncludeXMLConsumer consumer =
 new org.apache.cocoon.xml.IncludeXMLConsumer(xmlConsumer);
 </xsp:logic>
 <user>
 <name>
 <session:get-attribute name="id"/>
 </name>
 <background>
 <session:get-attribute name="color"/>
 </background>
 <feeds>
 <esql:connection>
 <esql:pool>portal</esql:pool>
 <esql:execute-query>
 <esql:query>
 SELECT newsfeed from MOREOVER_TABLE
 where name = '<session:get-attribute name="id"/>'
 </esql:query>
 <esql:results>
 <esql:row-results>
 <xsp:logic>
 source = null;
 try {
 source = resolver.resolve(

 319

 "http://p.moreover.com/cgi-local/page?index_"+<esql:get-string
column="newsfeed"/

>+"+rss");
 source.toSAX(consumer);
 } catch (Exception ignore) {
 </xsp:logic>
 <p>Newsfeed <esql:get-string column="newsfeed"/>

currently
not available.</p>
 <xsp:logic>
 } finally {
 if (source != null) source.recycle();
 }
 </xsp:logic>
 </esql:row-results>
 </esql:results>
 </esql:execute-query>
 </esql:connection>
 </feeds>
 </user>
</cxa:if-session>

First you declare two variables for your XSP code: a Source object and a consumer.
Both are used to resolve and include the news in the current document. You resolve a
news feed by using the SourceResolver. Because the resolved Source object always
streams a full XML document containing the startDocument and endDocument SAX
events, you need to filter these events. That’s the purpose of IncludeXMLConsumer.

You generate an XML document containing information about the user, such as the name
and the color. These values are stored in the session, so you only need to get them out of
the session. The feeds section is more complex. You use the esql logicsheet to fetch the
data from the database. For each fetched row or, more precisely, each fetched news feed,
you write some Java code.

This code resolves the news feed and includes it in the current document. The code is
very similar to the code you used in Chapters 8 and 9 to resolve documents. If an
exception occurs during the processing, you include a message stating that the news feed
is currently unavailable.

The last code you add tests whether the authentication was unsuccessful:

<cxa:if-session test="false">
 <p>Please try again.</p>
</cxa:if-session>

If a user who is not authenticated requests the portal document, he sees this message.
Together with the preceding pieces, you have a complete XSP document that covers the
same functionality as the portal in Chapter 7. Because the XML produced by this XSP is
very similar to the XML of the extended portal, the final stylesheet to present the portal

 320

in HTML is similar, too. We do not repeat it in this chapter, but you can have a look at it
on the book’s companion CD.

The Edit Document

The remaining part of the portal is the editfeeds document, which allows the user to select
new news feeds or remove a news feed from his portal.

This XSP document is very similar to the portal XSP document. It tests whether a session
exists in order to verify whether the user is authenticated. If the user is not authenticated,
a message is displayed stating this. However, if the user is authenticated, the esql
logicsheet is used to fetch the different news feeds from the database for the user. The
name and ID of the feeds are included in the generated document. A stylesheet uses this
information to present an HTML document similar to the one from Chapter 7.

If the form is submitted, the same technique is used to update the database as in Chapter 7:
An action-set evaluates the request parameters and either adds a new news feed or deletes
an old one.

Because the XSP document and the stylesheet do not present anything new, we refer you
to the CD to have a look at them.

Adding New Features

You have completed the first step of your advanced portal:You have converted the
extended news portal to XSP and have added a session to track the user and store
information. You have a nice portal that is a little faster because of the sessions than the
version in Chapter 7. But to be honest, you haven’t made real progress in adding user
functionality.

But don’t be disappointed. This chapter is twofold. The first part had the aim of
introducing XSP, and by converting the portal, you achieved this goal. The next good
news is that the second part of this chapter deals with extending the portal! Because you
now are using XSP as the base for your advanced portal, you can easily integrate new
functions.

The Logout Document

Because you have created a session for the user, you should finish the session. It’s best to
do this when the user logs out.

So you add a new link to the portal document that allows the user to log out. This link
requests the logout document. This XSP document is shown here:

<xsp:page xmlns:xsp="http://apache.org/xsp"
 xmlns:session="http://apache.org/xsp/session/2.0">

 321

<document>
 <session:invalidate/>
 <p>You are logged out now.</p>
</document>

</xsp:page>

This is a very simple XSP document that uses the session logicsheet to end the session. It
then displays the message You are logged out now. A stylesheet that you will find on the
CD transforms the output of this XSP document to HTML.

Last Logged In

A common feature of a “system” in which a user has to log in is that these “systems”
display when the user was last logged in. Believe it or not, you will add this to your portal,
too.

For this, you add a new column for each user to your database containing the date he last
logged in. When the user is authenticated, this value is fetched from the database and
stored in the session. The value is updated to the current date, so the next time the user
logs in, this date is presented.

You store the value of the database column in the session using the following statement:

<session:set-attribute name="last-logged-in">
 <esql:get-string column="last_logged_in"/>
</session:set-attribute>

After the authentication procedure, you test whether a session exists to detect whether the
authentication was successful. In this case, you send a SQL update command to the
database, updating the last-logged-in date to the current time:

<cxa:if-session test="true">
 <esql:execute-query>
 <esql:query>
 update PORTALUSER_TABLE set last_logged_in='<cxa:date/>'
 where id = '<xsp-request:get-parameter name="id"/>'
 </esql:query>
 </esql:execute-query>
</cxa:if-session>

You use your custom logicsheet to get the current date using cxa:date. The rest is the
usual SQL update command for updating one column.

In addition, you have to include the last login date in the XML document in order for the
stylesheet to present the user with this information in HTML:

 322

<last-logged-in>
 <session:get-attribute name="last-logged-in"/>
</last-logged-in>

Because the value is already stored in the session, you only have to get it and include it.
The stylesheet for the portal picks up this value and displays You were last logged in
on....

With this little function, your portal looks a bit more professional. With the next feature,
you will add a function that is unavailable in most portals.

Random Cocoon Tip

You know many programs that display a “tip of the day” each time the program is started.
With Cocoon, you can do this even better:You can present a random tip each time the
portal is requested.

You might wonder where you get all these tips. They are contained in the Cocoon web
application inside the online documentation (the documentation has a FAQ). This FAQ
is—guess what—an XML document found in the documentation/xdocs directory inside
the Cocoon context directory. This document is called faq.xml.

So you have a FAQ from which to select a tip, and you have your XSP logicsheet that
can generate random numbers. So the only thing remaining is to connect these two in
your portal document:

<faq-section>
 <select><cxa:random min="1" max="50"/></select>
 <xsp:logic>
 source = null;
 try {
 source =

resolver.resolve("context://documentation/xdocs/faq.xml");
 source.toSAX(consumer);
 } catch (Exception ignore) {
 } finally {
 if (source != null) source.recycle();
 }
 </xsp:logic>
</faq-section>

First you calculate a random number between 1 and 50, and then you use the
SourceResolver to include the FAQ XML document in your generated XML. Note that
you include the complete document, not only the tip you are interested in. These two
pieces of information (the random number and the complete FAQ) are then evaluated by
the portal stylesheet:

 323

<xsl:template match="faq-section">
 <xsl:variable name="select">
 <xsl:choose>
 <xsl:when test="normalize-space(select) > count(faqs/faq)">
 <xsl:value-of select="select mod count(faqs/faq) + 1"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="normalize-space(select)"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <hr/>
 <h2>Cocoon Random Tip(No. <xsl:value-of select="$select"/>)</h2>
 <xsl:apply-templates select="faqs/faq[position() = $select]"/>
</xsl:template>

The first part of this stylesheet template tests whether the random number is higher than
the number of tips contained in the FAQ. If this is the case, the random number is

corrected. With the now-correct number, <xsl:apply-templates/> is invoked
with only the node of the tip in question. So the stylesheet filters the FAQ, and only
one FAQ entry remains in the resulting HTML document.

Because the whole FAQ is not formatted in HTML, you added some more templates to
the stylesheet to present the FAQ entry in a more HTML-style format.

Now that you have all the pieces implemented, let’s put them to work.

Running the Portal

Your portal consists of several pieces. You have the SQL database, the XSP logicsheet,
and the various XSP and XSL documents. Of course, because these are all contained on
the CD, you only have to copy the contents of the example folder from the CD into the
Cocoon context directory. So you have logicsheet.xsl and the portal directory directly
beneath the Cocoon context directory.

The next task is to configure the HSQL database. Because you modified one table, you
have to delete the entries for the portal demo from Chapter 7 first. Then you add the new
configuration to cocoondb.script, which can be found in Cocoon’s \WEB-INF\db
directory. This file can be edited with any text editor. The following lines then need to be
appended to the end of the file:

CREATE TABLE PORTALUSER_TABLE(ID VARCHAR,PASSWORD VARCHAR,COLOR VARCHAR,

LAST_LOGGED_IN
VARCHAR,UNIQUE(ID))
CREATE TABLE MOREOVER_TABLE(ID INTEGER,NAME VARCHAR,NEWSFEED

VARCHAR,UNIQUE(ID))

INSERT INTO PORTALUSER_TABLE VALUES('matthew','wizard','yellow','never')

 324

INSERT INTO PORTALUSER_TABLE
VALUES('carsten','professional','red','never')

INSERT INTO PORTALUSER_TABLE VALUES('cocoon','magic','white','never')
INSERT INTO MOREOVER_TABLE VALUES(1,'matthew','banking')
INSERT INTO MOREOVER_TABLE VALUES(2,'cocoon','usa')
INSERT INTO MOREOVER_TABLE VALUES(3,'cocoon','banking')
INSERT INTO MOREOVER_TABLE VALUES(4,'carsten','computer')

Next comes the connection configuration for the database in cocoon.xconf. If you still
have the configuration from the extended portal, you don’t have to add it again. If you
don’t, you need to create a new database connection. You do this by adding a few lines to
cocoon.xconf. Open the file with your favorite XML editor (or a simple text editor if you
prefer). Find the <datasources> section of the file. This part of cocoon.xconf contains
the configured database connections, and it is where you will add the new one. Add the
following lines inside the <datasources> tags:

<jdbc name="portal">
 <dburl>jdbc:hsqldb:hsql://localhost:9002</dburl>
 <user>sa</user>
 <password></password>
</jdbc>

Make sure that you still have configured your own logicsheet as a built-in logicsheet in
cocoon.xconf. If you don’t, have a look at the beginning of this chapter to see how you
can add it.

As always, the last part is to add the entries to the sitemap. As in Chapter 7, you have
three parts to add. First are two custom actions:

<map:action name="add-feed"

src="org.apache.cocoon.acting.DatabaseAddAction"/>
<map:action name="del-feed"

src="org.apache.cocoon.acting.DatabaseDeleteAction"/>

Then comes the new action-set:

<map:action-set name="portal">
 <map:act type="add-feed" action="Add"/>
 <map:act type="del-feed" action="Delete"/>
</map:action-set>

Last are the pipelines:

<map:pipeline>
 <map:match pattern="newsportal">
 <map:redirect-to uri="portal/user/start"/>
 </map:match>

 325

 <map:match pattern="portal/user/*">
 <map:act set="portal">
 <map:parameter name="descriptor"

value="context://portal/resources/
dbfeeds.xml"/>
 </map:act>
 <map:generate src="portal/resources/{1}.xsp" type="serverpages"/>
 <map:transform src="portal/styles/{1}.xsl">
 <map:parameter name="use-request-parameters" value="true"/>
 </map:transform>
 <map:serialize type="html"/>
 </map:match>
</map:pipeline>

Make sure that you remove all configuration from the extended portal beforehand. So,
that’s it. Now start Cocoon and invoke http://localhost:8080/cocoon/newsportal.
You will see the portal’s login page. Log in and enjoy the new version!

Of course, some of the statements from Chapter 7 are still valid. This is not an
award-winning solution. But we think it is a good starting point for you to experiment
with the wonderful world of Cocoon. So you can either look at Chapter 7, where we
suggested some improvements, or you can use your imagination.

Conceiving and Designing a Cocoon Application

This finishes your full-featured Cocoon application. First you converted the extended
portal from Chapter 7 to XSP, and then you added some more functions, such as a
last-logged-in function and a random tip.

It is obvious from the sample portal that using a session is very useful in developing web
applications. Unfortunately, currently the only way to deal with sessions is to use XSP or
to write custom components. Chapter 12 presents some alternatives currently in
development for Cocoon. These alternatives include a complete portal framework and
complete session handling without the need to program Java or XSP.

This sample portal included all the important information in this chapter, especially a
concept of what you wanted to build and what Cocoon provides that allows you to
develop the solution.

In real life, however, you rarely are presented with a finished concept. More often, a
problem is presented that needs to be solved. It’s your job to first design the concept and
then build the web application defined by this concept. The next chapter goes over some
tips on conceiving and building advanced XML web applications with Cocoon.

 326

Chapter 11. Designing Cocoon Applications

The previous chapters discussed how Cocoon provides a complete XML platform for
building applications. We looked at how solutions developed with Cocoon can meet the
challenges facing today’s modern application architectures. We also presented some
examples for small applications and built a personalized news portal using Cocoon
concepts and technologies.

Cocoon is not a platform specifically aimed at only one application area, such as a portal.
Cocoon can be used to build a variety of applications and solutions. Because we have
been using Cocoon as a base for the paid work we do, we have built web sites and portals
and have also used Cocoon to build front ends for databases, XML processing systems,
and integration systems for different hosting environments, such as those used for
Application Service Providing (ASP).

It is our experience that learning to use Cocoon to build these types of applications takes
time, because the philosophy behind the solution is different from the way Internet
applications are commonly built, using scripting languages such as ASP and JSP or
dedicated software solutions built using servlets or other components.

We have included this chapter to provide additional background information and tips that
we hope will help you if you want to develop a more advanced Cocoon application, such
as an Internet portal. A lot of this information will not be completely new if you have
read through the book. However, we have often heard people say, “There is so much in
Cocoon. What do I actually need if I want to build a certain type of application?” The aim
of this chapter is to provide this information in a different context so that you can then go
back to where we originally explained it for the full details.

Before getting into the different types of applications you can build with Cocoon, we will
start with some general points that are important when designing any type of software
solution. Although this might seem to be a long list of things to think about, remember
that you will probably only need to look at individual points when you start building real
applications, such as a new Internet portal for a major client. That being said, it is always
a good idea to start with a concept of what you will do.

 327

The Application Concept

Few people can cook exotic meals without a recipe. The recipe gives you an idea of what
the result will look like, what ingredients you need, and how you should prepare the dish.
Using a recipe as a concept for your meal is common sense.

When you build an application with Cocoon, a concept that includes the points discussed
in the following sections helps you plan your solution and prevents you from making
some of the more common mistakes. The following sections define the system
functionality, the application architecture, and aspects such as performance and
presentation design.

While thinking about these points, you can also try to work out which of the described
Cocoon technologies will be important for what you want to do and whether you perhaps
need to write additional components. We will also provide some guidance for the times
when, even after you’ve done all this, things still don’t work as you expected. We will
start with probably the most common question asked of any application: “What’s it
supposed to do?”

General Functionality

The first step is to define the functionality of the system you will build. Most systems
built with Cocoon publish data in some way. In addition, there might be functions that
allow the user to interact with the application in some form. Depending on the type of
application, it might be necessary to define areas of information that are then combined
into the complete application.

As an example, imagine that you are building a web site application for an imaginary
company that produces Rewinders (don’t ask us what these are; it’s imaginary).
Obviously you need functions that allow general information about your firm to be
published. However, you have several different areas of information you want to publish,
so you need to structure the application. Here are a few areas you might want to define:

• General information about Rewinders
• News about the company (Rewinder Inc.)
• Industry news
• Products offered
• Jobs
• Information for employees only

If you check out some company web sites, you will see that most have this sort of
structure. Each area in your web site will have subareas that provide more detailed
information. An area such as “Products” will contain all the different types of Rewinders
that are offered. The section called “Employees Only” will provide special information
about upcoming Rewinders. This information should be available only to someone who
has logged on to the system.

 328

After you have designed the application’s structure, it is time to think about any
interactive components you might need. Perhaps you will need an application form in the
“Jobs” area or a feedback form in the “Products” area. In addition, you will need some
form of login page for the “Employees Only” area. You also want to know when
someone looks at the new “Cool Blue Rewinder,” so you specify that you want an email
to be sent when that document is viewed.

Depending on the type of application you are building, you might need only publication
functions. If your solution is aimed more at processing information, you need more
functions that allow interaction with your system.

After you have set up the application’s structure, you must work out how navigation
through the system is possible. After someone enters the “Products” area, what other
areas can he access from there? What happens if he accesses the “Employees Only” area?
Working out the navigation and flow can be one of the most time-consuming jobs when
designing the application.

A typical application will be a combination of published data and data that flows from the
user to the application. After you have defined the site’s structure, it is time to think about
the content.

The data you want to publish must come from somewhere. Either it is already stored in a
file or database, or it will be obtained from external sources at runtime. An area such as
“Jobs” will access the current job openings from a database. An application area such as
“Industry News” will probably access a news provider to obtain news about the current
state of the Rewinder industry. The authentication data is also probably contained in a
database. You will need access to it to check such things as the password when a user
wants to access the “Employees Only” area.

As soon as you know where the data you want to publish comes from, you need to
determine what format it is available in. Of course, it is ideal if the data is supplied in an
XML format.

Next you need to define your output formats. Your imaginary company wants to publish
its web site in HTML first. In addition, some of the documents are to be in PDF, and you
want to offer product descriptions in WML.

Notice that we have not yet talked about a specific technology. Indeed, a first concept
does not require any knowledge of how you will realize your application. As soon as you
have the concept in place, you can decide which technology to use (in this case, Cocoon)
and then move on to defining the actual system architecture.

Application Architecture

After you have defined and documented the points just discussed, you can start building
the actual architecture for your application using Cocoon. You need to define the various

 329

documents you want to publish through the web site and work out what sort of pipelines
you need in order to generate the different formats.

Here are some of the types you need for Rewinders Inc.:

• Pipelines that obtain data from a file and format that data in HTML or WML
(depending on the browser)

• An additional pipeline that sends an email if a particular document is chosen
(such as the Cool Blue Rewinder)

• Pipelines that access data from a database and format it in PDF (for online
product handbooks)

• A pipeline that accesses online industry data and formats it in HTML
• A pipeline that receives the incoming forms data from the feedback form and

saves it to a database

As soon as you have laid out the types of pipelines you need and have decided how many
of each you require, you might need to think about splitting them between subsitemaps to
ease maintenance of the complete site. Another alternative might be to use content
aggregation to combine separate pipelines into a single pipeline that is then formatted for
output.

Because a complete application architecture is seldom confined to just one area, such as
what you build with Cocoon, you also need to think in advance about things such as
bottlenecks that might occur when you roll out your solution:

• What would happen if all 30,000 employees accessed the “Employees Only” page
at the same time?

• How will the system react when all the customers hit the “Cool Blue Rewinder”
page at exactly the same time?

• Will the email system be able to cope with all the emails?

These are the sorts of questions you should ask yourself while designing the application
architecture. This brings up one of the most important aspects of such a system:
performance.

Performance and System Environment

We have been building Internet applications for quite a few years, and it is our experience
that one of the most common problems is that after it is installed, the solution is always
too slow. This is something that all applications suffer from, as you can see in the various
discussion forums of any software product.

This does not always mean that the programming is sloppy (although perhaps often it is).
There is often a great difference in the speed an application can actually achieve and the
perceived performance that the end-user might experience. Also, a system that performs

 330

well when only one user accesses it might collapse if several users send requests at the
same time.

A system that integrates many different data sources might suffer from bad performance
even though the actual portal application might be fast enough. A portal’s speed is
defined to a great extent by the speed at which data from external systems is delivered.
So a portal will be slow if one of the data sources is slow. Unfortunately, no one will care
that it is not your fault if it takes minutes for the portal to appear in the browser.

When designing a complex software solution, it is always best to define performance
expectations beforehand and to test for performance as early as possible. This sounds
simple, but this point is often forgotten until it is too late. If nobody takes the time at the
beginning of the project to define the expected performance, the system will always be
too slow. It is a lot more difficult to correct performance problems after the solution is in
a production environment.

When we installed our first online Internet banking solution, very few people accessed
their accounts via the Internet. The application worked well and delivered the web pages
quickly enough. However, no real stress testing was performed at the beginning, so we
did not really know how many requests our system could handle. Over the months the
application was installed, the number of requests grew slowly but steadily. Still, no stress
testing was done. After all, the system ran OK didn’t it? Then, for some strange reason,
the number of people using the system suddenly exploded overnight! Needless to say, the
whole system collapsed under the load. It was far worse having a nonfunctional system in
this situation than it would have been when Internet banking was still an exotic
application.

How do you define a system’s expected performance? It depends on what the system is
supposed to do. The first thing you can do is check out the data sources and decide what
sort of performance you can expect from them. If you are integrating standard data
sources (such as a standard database), you can often obtain performance data from the
vendor. Get that data, but take in the information with a grain of salt. To really check,
you need to run your own isolated tests against the single system if you can. It is much
more difficult to find bottlenecks after everything is integrated.

Before you start evaluating the performance of individual systems, make sure you also
define your computing environment. What’s the good of testing the system on some
high-powered system if it will actually be running on a low-end box? Also make sure you
test on the same operating system and using the same hosting software (such as a servlet
engine). The servlet API might be standardized, but in reality you will find that life is not
so simple. And it is a lame excuse to say, “We didn’t test on that system” when a
complaint comes in.

Another way to find out what to expect from your system is to check out other solutions
that might do the same thing you are planning on doing. See how fast they run, and try to
obtain some information on how they work. Check out case studies, often published on

 331

web sites, to find out the architecture used to build the application. You might also be
able to find out by asking whoever built the system.

As soon as you are satisfied that you know what to expect of your application, here are
some tips on what you can use in Cocoon to achieve the fastest possible application:

• Use the built-in Cocoon caching whenever possible when building your pipelines.
• If you need to write your own components, make sure they support the caching

interfaces in Cocoon if possible.
• Stress-test your application using an available tool, and observe how the

performance changes if you adjust the pooling of Cocoon components.
• Make sure you are running your application with the lowest level of trace, where

only errors are logged.

Another piece of advice when writing components that connect to a specific data source
(especially if it is not your data source) is to make sure you add a time trace. In other
words, trace when you connect to the external data source, and trace when the data is
returned. That is the time someone else has to worry about.

If, after testing with stress tools, you find that your system performance is not good
enough, you will want to look into what else you can do to improve the response time.
Obviously it is a good idea to make sure the system has enough memory and the
processor is fast enough. If you are running in a servlet environment, you might want to
try an alternative servlet engine to see if you can get better performance.

You might also want to look into front-side and back-side caching. A front-side cache is
placed between Cocoon and the Internet. Any client program requesting a particular
document receives it from the cache, not from Cocoon itself. The cache can store the
complete document and request it from Cocoon only if it has expired. Cocoon then
generates the new document and serves it to the cache to be stored. Look into how you
can control the expiration of generated documents using the appropriate HTTP headers in
your documents. There are several ways of doing this. For example, the Cocoon reader
component allows you to set HTTP headers. Another way is to write your own
component, such as an action that sets headers when used in a pipeline.

If you are accessing an external data source that is too slow, you might need to
implement a backside cache. This type of cache sits between Cocoon and the external
data source. The pipeline requests the data from the cache, not from the data source itself.
There are various ways of implementing the cache. You can look at the description of
how Cocoon caches pipelines to get some ideas on how to implement your own.

It is a good idea to provide the user with some visual feedback to show what is going on.
If the user cannot see anything happening on the screen, he will perceive system
performance as being too slow, even though it might not be. One way of doing this is to
load an intermediate page that says something like “Please wait; your data is being
fetched” and then let this page call the function on the server that does this. Presenting

 332

the user with something to read while the work goes on in the background means that by
the time the user has finished reading, part or all of the data will have been retrieved.
Look into redirects and metatags to do this if you are building a site in HTML.

When designing HTML web sites, one of the mechanisms used most often is frames.
Although this is not a book on magical HTML design, here’s a piece of advice:
Remember that each part of a frame causes a new request to be sent to the server. So if
you have a page containing four different parts (header, footer, navigation, and actual
content), that is a total of five requests to the server and five pipeline calls in Cocoon. Try
to reduce the use of frames if possible. One way is by using Cocoon’s content
aggregation to aggregate the different parts of a page and then use a stylesheet to format
the output.

In addition to the tips just discussed, there are additional areas you will want to check
when you design the output format—which brings us to presentation.

Presentation

Most applications have some form of presentation. Because presentation in Cocoon is
done using XSL stylesheets, you need a working knowledge of this technology to be able
to author your presentation. You will also want to look at tools that help you author
stylesheets.

One of the major steps is deciding what presentation format you need. Of course, the
advantage of Cocoon is that you can add further types of presentations by adding
stylesheets as you need them. However, this should not keep you from planning your
presentation carefully.

Decide whether you want to support each client application (such as the different
browsers) individually or whether you want to go for a format that suits both. Be aware
that by the time you have finished your application, a yet-unknown browser might be the
market leader.

Design your presentation for speed. This point is not necessarily limited to Cocoon
applications, but it is worth stressing. If you plan on presenting your data in HTML, make
sure you follow the guidelines as to how you should construct HTML pages for
maximum speed when you author your stylesheets. This can depend on the browser type,
so refer to available information on this subject.

Make sure you follow the Cocoon paradigm of separating concerns. Even though Cocoon
offers you ways of splitting layout and content, it does not force you to. We have seen
Cocoon applications built where XHTML was used as the format for the data. Although
this might seem like a good idea to start with, after all, XHTML is an XML format.
Imagine trying to then provide a presentation layer in WML. As mentioned in Chapter 2,
“Building the Machine Web with XML,” extracting the actual data from a format like
XHTML is quite difficult.

 333

Decide whether your presentation is static or whether it offers personalization of some
sort. Check out the later section “Portals” for more information on using personalization
to influence the output of your application.

Think about seasonal changes to your presentation. Make your application interesting by
making small changes to the web site’s appearance, depending on the current season. For
example, you could give your site a Christmas feeling during November and December.
Write a component such as a selector that provides you with this information.

If you already have HTML pages that you want to reuse in your Cocoon application, this
is also possible. You would use the HTML generator to read the HTML and then have a
stylesheet format the XHTML into the format you require. This is a way of easing the
migration path to a complete XML/XSL-based solution. Another way of migrating is to
have the Cocoon solution run in parallel to the application you already have. Cocoon can
then generate parts of your site for you. Any new HTML pages can be authored using
stylesheets, and the existing site can be served as before.

Even though you might have authored your HTML documents using stylesheets, there
will be times when you need to include technologies such as JavaScript in your pages.
Another technology that is often used with HTML is Cascading Style Sheets (CSS). CSS
is often used to achieve dynamic look-and-feel changes on HTML pages. All of this can
be used (or reused) in a Cocoon environment. The site map must be configured to allow
the JavaScript (.js) files and the CSS (.css) files to be served through Cocoon. Look into
using a reader to do this. Alternatively, these files can be served directly from the web
server.

It’s possible to use other technologies inside your web pages in the same way. You can
use Java applets inside web pages by using the appropriate tags to include them inside the
generated HTML pages. Just make sure your .jar file can be served either through
Cocoon or directly.

While someone is working on the presentation side of the application, someone else can
be defining the content.

Know Your Content

We have already mentioned that the XML parser used in Cocoon can validate the XML
data it parses. It can do this using DTDs or XML Schemas. When building the
application, you will probably not yet have a DTD for all your data. This means that you
cannot use XML validation in Cocoon, because you can only activate it for all the
documents, not for an individual one. Even if you do not use the parser to validate the
data, you should document your XML using either a DTD or an XML Schema before
moving the application into a production environment. (Of course, the earlier the data’s
format is documented, the better.)

 334

As more and more XML tools come onto the market, they begin to offer advanced
features such as automatically validating the data you enter into, say, an editor. Now,
suppose you have a Cocoon-based system and have authors who are writing content for
that system. Often, they will use third-party tools to do this and then upload the content to
the system or deploy it through some other means (perhaps saving it to a database).
Obviously this is ideal if you can provide these authors with a DTD of the data. They can
then use the DTD inside their editing program, and you know that the data they submit
will be in a format you expect and have written stylesheets for.

While the designers are working on developing the stylesheets that will present the data,
that data also needs to be defined and documented.

Document Your Data Sources

We talked briefly about external data sources when we discussed application
performance. However, other factors also need to be taken into account when data is
obtained from an external provider, such as a news feed.

Obviously, the most important fact is that you know exactly what format the data will be
in. The best way to achieve this is if the data’s format is documented in some way, such
as in a DTD. You read about the various ways of documenting XML data in Chapter 2. It
is an enormous advantage if your provider can send you the data in a standardized format.
This becomes a great time-saver if you have to integrate several sources and they all can
provide the data in the same format. It will then be possible to reuse the stylesheets. This
is true of the news providers we looked at when building the Cocoon news portal in this
book. Because the news is provided in RSS format, you could use the same stylesheet for
several different feeds.

When designing the flow of data through your application, you need to consider two
important points. The first point is the internal data definition. As shown in Figure 11.1,
this is the format of the news data in your application. Every external data format needs
to be converted into this format, so you need a stylesheet for every data source.
Obviously it makes sense to choose a standardized format as your own internal format.
This reduces the number of transformations you need, because not every external source
that already supports your internal format needs a stylesheet transformation.

Figure 11.1. Format transitions using stylesheets.

 335

The next step is to define a logical layout format. News data is not normally structured
for presentation, so you need to think about defining a format that allows transformations
into the end format, such as HTML or PDF. If your application is not limited to
publishing just news data, but it also publishes other types of information, you will want
to look into defining a logical layout format that is not data-specific. This lets you easily
publish different types of data using the same stylesheets.

If you opt to use a standard format such as WML or XHTML as your logical layout
format, make sure you will still be able to convert this format into a different layout, as
shown on the right side of Figure 11.1.

This concept leaves you with three different transition areas:

• Incoming data must be transformed into your news data format.
• The news format must then be transformed into the logical layout format.
• The last area of transformation is into the regular output format.

Check to see whether your data source is always online. Nothing is more embar-rassing
than finding out that your news provider is online only during the day when your news
portal crashes the first night. Use appropriate selectors in the pipeline to ensure that you
access the online server during the day and perhaps a database repository at night.

Make sure you can obtain the data you need with the least number of requests possible.
We have seen a Cocoon-based application built to present stock information in which one
block of information (such as an overview page) required the middleware solution to
perform more than 20 requests against the data provider. Even worse, most of these
requests had to be sent in order, because they were dependent on each other. The problem
isn’t that this can’t be done with Cocoon—it can. But if you remember the earlier tips on
performance, perhaps you will see why this point is worth stressing.

 336

After you’ve defined the functions your system should have, the layout you want to
present to the user, and the data format that is to be the core of your application, you need
to look at the Cocoon components you can use to do all this.

Different Technologies

As mentioned at the beginning of this chapter, Cocoon provides many ways of solving
certain problems. People new to Cocoon are sometimes overwhelmed by the many
possibilities. Often, only one type of component is used to solve a problem when perhaps
a different solution would have been better. As an example, when starting out with
Cocoon, we often found ourselves writing new transformers when it would have been
better to use an action or selector instead.

Here are some tips on when to use what:

• Using a given component is better than writing your own.
• Use generators when you have an identifiable data source that can be used as the

starting point for your pipeline.
• Use transformers when you need to manipulate the XML data flowing through the

pipeline.
• Use actions and selectors to influence the pipeline if their results do not need to

manipulate the output document.
• Use an action if you want to execute a task that does not influence the XML

processing pipeline.
• Use a selector if you want to choose between different processing pipelines.
• Use XSP for rapid development of a custom generator, and transform it later into

a real generator.

This section has looked at a few aspects that are important when you design your Cocoon
application. Performance is probably the key factor when the application is actually
finished and installed. A well-thought-out concept is a necessary starting point for good
design. “Program now; think later” is, in our opinion, not the way to build Cocoon
applications. Unfortunately, even writing a great concept beforehand still might not
prevent problems from occurring.

Solving Problems

So, you’ve written the concept, designed the architecture, written any needed components,
and built the pipelines—and things still don’t work as you expected. Here is a
two-sentence answer to this problem:

Someone else has already solved your problem! All you need to do is find that person and
solution.

Sounds simple, doesn’t it? But for many cases, this is true. Problem solving has become
easier with the Internet. When we first started using Usenet newsgroups (which were

 337

exchanged using UUCP back in those days), we could post our problems—not just to our
colleagues in Paderborn, Germany, but to the whole world! And the Internet has
expanded this “knowledge base” so that now it is very probable that someone out there
has already had the same problem you are trying to solve.

The Cocoon web site is a good starting place for finding information and help. There you
can find mailing lists and archives of past list discussions. Chances are your question is
there somewhere. Subscribe to the mailing lists and join the Cocoon community.
Appendix C, “Links on the Web,” lists links for the Cocoon web site.

Search engines are also a good choice when you are looking for a solution to your
problem. However, if you query a search engine, you probably will be swamped with
thousands of answers that don’t really help. If you already know roughly the area your
question applies to, perhaps checking one of the newsgroups is a better way to go. There
are newsgroups for most of the subjects in this book, such as XML and XSL. However,
there is as yet no newsgroup for Cocoon. Hopefully, you will be able to solve any
problem that might arise using one of the listed methods.

Using the information discussed so far should allow you to complete your application
concept and design the architecture of your solution, complete with the required Cocoon
technologies. Even though most people who look at Cocoon and read this book will
already have an exact idea of the type of application they want to build, it is always a
good idea to see how other people are using the technology. The following examples
might provide some additional ideas for the types of applications you can build with
Cocoon.

Different Types of Applications

Cocoon lends itself to being used to build a variety of solutions. Although Cocoon is
aimed primarily at the XML publishing sector, adding your own components lets you
expand Cocoon into a complete middleware architecture.

In the past we have worked on building a commercial solution that provides additional
(and sometimes customer-specific) components needed to provide a complete solution.
We added components and functionality to Cocoon without throwing away a single
Cocoon concept. This shows the extensibility of the architecture.

To give you some idea of what perhaps you can do to solve a specific problem, here are
some of the extensions we have written to provide the various solutions we have built
with Cocoon:

• Components for authentication and user administration
• Portal framework components
• A complete XML/XSL-based content management system
• Integration components for a commercial XML database
• System management components

 338

Although these components were not written as part of the Cocoon project, some of them
will find their way back into Cocoon and hopefully will be available in the not-too-distant
future.

Using Cocoon and the additional components allows you to build applications such as
portals, flexible publishing systems, and web sites. Because Cocoon can process XML
data, you can also build solutions that can receive complete XML documents as input and
process them using pipelines.

Let’s look at some of these application types in more detail. The most common Internet
application is the web site, where information is published as HTML. This type of
application becomes more complex to develop when the information is stored in external
systems such as databases and when additional formats such as PDF are required. The
web site needs to be extended into a network publishing application to provide these
advanced capabilities. When several different types of users are accessing the system,
some form of personalization is called for. The term portal is often used to describe this
type of application. This chapter concludes with a look at how to use Cocoon to build
portals.

Using Cocoon to Build Web Sites

One of the most common uses of Cocoon is as a system for building web sites. After all,
that is its main function. Many web sites already use Cocoon; they are listed on the
Cocoon web site. We discussed a web site example earlier in this chapter. Now we will
add to the information that was discussed there.

Remember that Cocoon organizes a web site’s content using a sitemap. Although it is
possible to define a pipeline for each document your web site will serve, this would result
in a sitemap that becomes very hard to maintain. Therefore, you need to define pipelines
that can handle similar types of content, perhaps split into different areas. Look into how
you can use wildcards in the sitemap as a method of combining several documents into
one pipeline.

Make sure the layout developer (the author of the stylesheets) uses a tool that can
perform XSL transformations on some sample data for that format. You should provide
the author with sample data to use. It will be easier for him to test individual stylesheets
this way instead of having to use Cocoon each time.

Another important point is to make sure the layout deployers use a tool that either already
uses the Xalan XSLT component or that lets you use it additionally. If the tool allows a
version of Xalan to be used, make sure you use the same version as the one in the Cocoon
you will be running. Which tool is best suited for the job depends largely on exactly who
will be using it and for what purpose. We have provided a list of relevant links to tools in
Appendix C.

 339

Although your first-version web site might only read its content from XML files and
publish to a single format such as HTML, one day you will want to use something more
advanced to store your data, such as a database. You might also need to integrate external
systems such as mainframes into your application. In addition, there might be demand for
additional formats as users use devices such as mobile phones to access your solution.
The web site must therefore be extended into a network publishing application.

Network Publishing Applications

Although this is only a different way of defining something, we use the term publishing
application to emphasize that the data you want to display is actually stored somewhere,
and we don’t mean in a file. A publishing system might generate reports from data that is
obtained from a database, for example. It then might manipulate the data in some way,
perhaps to generate different views and then publish that data in one or more formats.

Areas you will want to look into include the Cocoon components that allow you to access
data from a database or external systems such as a remote XML server via HTTP. You
will also want to learn more about standards such as XSL:FO. After it is formatted this
way, your data can be laid out in different output formats, such as PDF or PostScript.

Publishing systems might be the first time you need to publish data that is dependent on
the type of end device. For example, you could allow mobile phone users to access only
the most important information while allowing browser users to access the full beauty of
your web site.

In our experience, using Cocoon as a publishing system for specific data is an ideal way
to introduce the technology into a new area. Applications such as a report generator,
which reads data from a database, consolidates it, and then presents that information in
HTML and PDF, can be built in an isolated fashion that does not intrude on given
software structures. The first little application we built with Cocoon was a front end to an
internal database we had at that time containing work reports. The solution read the data
from the database dependent on a query parameter and then presented an overview of the
data in the various formats. As a prototype showing what could be done with Cocoon and
how flexible it was, this was an ideal solution.

Publishing systems might be the first time you also need to integrate something like user
authentication and personalization—allowing only certain people to access the data. This
brings us to the next application form—the portal.

Portals

Although you probably think of something like myYahoo or myAOL when the term
portal is used, portals can actually be a lot simpler. We refer to this type of application
whenever some form of user authentication is necessary to access information or when
information can be individually personalized. This personalization can range from

 340

changing the color of a single document to configuring external news sources in a news
portal.

In our portal example, built over several chapters, we have already seen how it is possible
to build a portal using Cocoon. Nevertheless, and because we know that some readers
might jump right to this section, we will go over some of the main points again and in a
more general context.

In order for personalization to be possible, we need to be able to recognize the user when
he accesses the portal. Most portals require some form of authentication, such as entering
a user ID and password. This data is then matched against a repository, such as a database,
and the user is rejected if there is no match. Each user therefore requires an entry in the
database, and the application perhaps also needs to cater to an anonymous user (a user
without a login). After the user is authenticated, the application will want to allow the
user to access the different areas in the portal without having to log in again. Look into
ways of creating a session when running inside a servlet engine in order to do this. It will
also be necessary to recognize a returning portal user so that he does not have to log in
each time he accesses some part of the portal. An appropriate action component can solve
this problem.

Another important step is to define the portal structure. What information will be
available to the user after he has logged in? Will each user have an individual profile, or
will the portal cater to only specific groups of users? As soon as this has been decided, a
suitable XML format for the profiles can be defined. The profile should then contain
information relevant to the personalization (such as colors) or to the individual
preferences in regard to the types of information to be displayed.

Therefore, the first step of building the portal is to define where the user data and the
portal profile are to be stored. Then the application needs to define and set up a pipeline
in Cocoon for the authentication. One way of doing this is to have an HTML form send
the user ID and password to Cocoon and then use the sql_transformer to select the user
and profile from the database.

If the portal profile contains data on the types of information that are to be displayed, this
information must be fetched and integrated into the profile so that it is complete before it
reaches the stylesheet. Look into using content aggregation as a way of doing this. Each
different data source will then return information that is added to the user’s profile, so
that the end result will be a complete portal in XML.

After the profile has been selected and all the data fetched from the various sources, the
complete profile can then be transformed into a specific look and feel using a stylesheet.
The stylesheet can access specific details contained in the individual profile and format
the output as necessary.

If the personalization is based on the user who accesses the site, you need to define what
types of information the user can change and how the presentation should be affected by,

 341

say, his age. If you will be providing a different layout for teenagers than for middle-aged
people, you will need to define the criteria by which this can be decided. Writing a new
component such as a selector is an ideal way of doing this.

Think about whether you want to change the presentation dependent on other factors,
such as the time of day or the weather. Say you are building a stock-quote portal and you
present the current market chart (say NASDAQ) on your front page. After the NASDAQ
closes for the day, it might be a good idea to present a different chart, such as from Asia.
So if you want to switch content and presentation dependent on the time of day, look into
the Cocoon selector component as a way of doing this.

If you are thinking about building a late-night portal, in which the presentation changes
after a certain hour, remember that your user might be living in a different time zone, so
it might be the middle of the day for him when you select the late-night presentation.

Summary

This completes this chapter on Cocoon application design. As we said at the beginning,
you can build many different types of applications with the current version of Cocoon.
Although Cocoon’s main focus currently is on web sites, as more components are built
that integrate into the Cocoon architecture, it will expand and become a platform for
other types of applications as well.

This is one of the great advantages of using Cocoon as a base for XML applications.
Because of the way new components can be easily added, there is really no limit as to
how you can use Cocoon as the platform for your solution. As an open-source project, it
has much support from individuals and companies. Several firms have donated
components to the Cocoon project and in so doing have helped the software become
better suited for application scenarios such as the network publishing system and portal
described in this chapter. The next chapter outlines some of the directions Cocoon might
go in as XML and XML applications become more widespread. It also provides some
additional ideas as to where Cocoon can be used—perhaps in your particular
environment.

 342

Chapter 12. Cocoon: Weaving the Future

When we conceived this book on Cocoon, we decided that we would write this chapter
last. This might seem obvious, because it is the last chapter in the book, but chapters are
not necessarily written in the order they appear. This chapter would give us a chance to
fold all the developments that happened while we were writing the book into a chapter
that would also focus on what Cocoon’s future might look like.

As is the case with writing a book, software development does not happen in a void. It is
a very dynamic process. This is especially true of open-source projects that are developed
under widespread public attention. Because of this, the Cocoon project is directly
influenced by new technologies or by other projects that are being developed in close
proximity. Many of the developers who work on the Cocoon project are also working on
related projects such as Apache Avalon, so there is a lot of influence between the
different projects.

Cocoon is based on several other Apache projects and focuses on technologies that are
playing an increasing role in today’s application architectures. As additional components
are developed that extend the code base, Cocoon will become suitable for building
applications such as portals or content-management solutions.

Cocoon’s popularity is growing rapidly as we write this. The increased use of the
platform is leading to additional requirements and a growing developer community. With
additional components that have been donated to the project or developed by community
members, Cocoon can provide far more than just a framework for publishing. A large
development effort is currently going into adding increased support for building web
applications. These additions range from support for team development to simplifying
everyday tasks such as form handling to increasing scalability and performance. In fact,
by the time you read this, there might already be a version of Cocoon available that
incorporates some of the changes we have listed here.

The Evolving Cocoon Architecture

The Cocoon architecture changed abruptly from version 1.x when the current 2.0 version
was designed. The first version of Cocoon, started in 1998, was based on the DOM

 343

processing model. The XML files (the content) contained processing instructions that
Cocoon used to apply the XSLT stylesheets.

As you saw when we looked at Cocoon from a user perspective, the processing flow is
now defined by the pipelines in the centralized configuration file, the sitemap. The XML
processing now takes place using SAX, so memory consumption is much lower than it
was in the first version.

The sitemap is an XML file that is compiled into a Java class every time a change is
detected. To be more exact, first a stylesheet is applied that produces a Java source. Then
that class is compiled to produce what is loaded and processed by Cocoon to find the
correct pipeline for, say, a request.

Many developments, such as the transformation of the XML configuration file, are
constantly being refined in the Cocoon project. The project’s openness allows alternatives
to be discussed and then perhaps implemented if the project members reach a consensus.
In turn, this helps Cocoon evolve as new technologies become available or new ideas
emerge.

Some of the ideas being discussed, and, in part, already implemented in the current code
base, are a way of interpreting the sitemap (instead of compiling it), adding advanced
form handling, allowing actions to be more flexible, and extending how pipelines can be
configured.

Interpreted Sitemap

The current way of compiling the sitemap into a Java class using a stylesheet has several
drawbacks:

• The complex stylesheet that transforms the XML file into the Java class is now
more than 80KB in size.

• Adding new features or finding bugs has become very difficult.
• Stylesheet transformation is slow compared to other solutions.
• This way of creating Java source and then compiling it requires a Java compiler

that can be used from within Java code.

The last point is a potential risk for Cocoon, because currently there is no standard for
using the compiler in this way, and several servlet engines have some class path problems.
In addition, this way of using the Java compiler is deprecated in Sun JDK 1.4, so
eventually it might even be removed altogether.

It was for these reasons that the concept of an interpreted sitemap was put forward as an
alternative to the transformation and compilation model. In the new model, the sitemap is
interpreted, and an object tree of Java objects is generated. Each statement or tag in the
sitemap is then represented by an object. Each object knows what to do and when a

 344

request enters Cocoon. This request is forwarded to the object tree that then performs the
required task.

Advanced Action-Sets and Multiactions

Currently, actions can expose only a single functionality per Java class. This means that if
you need several functions that might be best implemented as actions, you need a
separate action for each function. This concept can cause a large number of actions to be
implemented, where it would perhaps be better if a single action could expose several
functions.

If you look at the actions you used in Chapter 7, “Cocoon News Portal: Extended
Version,” you can see that you had an action to insert data into the database and an action
to delete data. However, this would be easier to maintain if you had a single database
action that could provide a function for updating and a function for deleting data.

The concept of a “multiaction” has therefore been proposed. An action class contains
more than one method, each of which implements one specific action. The current act
method decides by looking at the value of a request parameter which real method
should be called. So the multiaction acts as a dispatcher.

Apart from extending the action in this way, another proposed change is to provide an
alternative to the cocoon-action parameter. As you have seen, the action selected from
an action-set is dependent on the value of the parameter cocoon-action. When using
several Submit buttons in a form, you must assign each button the name cocoon-action
with a value of the action that is to be called. However, this means that the button’s text is
always the same as the configured value. This can cause several problems, especially
when you’re designing layouts for different languages.

A proposed alternative is to allow the Submit button to be called cocoon-action-
followed by a postfix containing the actual value. An example would be
cocoon-action-add. Cocoon would then interpret the name and not the value, avoiding
the problems that exist currently.

Form Handling

A common task when writing a web application is form handling. The web application
presents one or more documents in which the user of the application can type in some
information and send it back to the server, where the data is processed. You saw
examples of this when you built the extended version of the news portal in Chapter 7.

Due to the request-response cycle that web applications are based on, developing a form
consists of two main steps.

The first step is developing the form that is presented to the user. This form is generated
by the first request to the application. When the user submits the information to the web

 345

application, a second request is sent that contains all the entered data. A typical example
is the login page, where the user has to enter an ID and password.

The second main task for form handling is the extraction of the submitted values from the
request and the validation by additional application logic.

Developing a form is therefore an error-prone task, because the developer has to
synchronize two documents—one that generates the form, and one that validates and
processes the submitted values.

Because form handling is a substantial part of a web application, currently several
discussions and development efforts are ongoing—not only in the Cocoon community,
but also in other open-source projects. They all have more or less the same goal:
simplifying the development of forms and supporting the validation of data. The main
idea is to define the data that should be editable in the form, together with the validation
rules. This description is then used twice: to generate the form and to validate and store
the submitted information.

With additions such as form handling, developing complex web applications with
Cocoon will be a lot easier than it is today. And to be honest, this is one of the additions
we are most interested in, because it will leverage Cocoon into areas where today many
commercial products are used.

Modularization

Another development effort currently being discussed is to support the modularization of
web applications. Using the version of Cocoon we describe in this book, it is rather
difficult to coordinate the team development of a Cocoon-based application. This is due
to the fact that some resources such as component configuration are maintained in a
single configuration file.

The new concept of “blocks” is heading in the direction of modularization. As soon as
this concept is implemented, it will be possible to develop several modules (or blocks)
that can then be put together to build a complete web application. Each developer can
define, develop, and configure each block individually.

This concept will also allow the reuse of parts of a web application. A generic solution
can then be developed as a block. This block can be reused in other web applications,
because it can be deployed with all the information it requires, such as configuration data.

Another advantage of the block concept is that every block can have its own description
containing information on how the block is to be accessed and what data it requires.
Having a description of the block available will allow tools to be built that can check for
consistency between blocks. In addition, it will be easier to publish blocks—or
collections of blocks—as web services, accessible via protocols such as SOAP or
XML-RPC.

 346

Pipeline Configuration

In a way, pipelines can themselves be considered components. However, the current
version of Cocoon does not provide very much in the way of flexible configuration for
these components. Take caching as an example. At the moment, it is only possible to turn
on caching for all the pipelines or for none at all. However, it would be better if it were
possible to override this configuration on a per-pipeline basis.

An administrator who designs the application by editing pipelines into the sitemap will
know that there is no need for the extra caching overhead for individual pipelines, such as
those that serve static documents or images. Pipelines that produce a very dynamic output
or that use components where caching is not possible are other candidates for a parameter
that defines caching on a per-pipeline basis.

In a web site scenario, it is quite common for a front-side cache to be placed in front of
Cocoon. This cache then stores the generated pages (such as HTML documents) and can
serve them to the client application faster than if they were generated dynamically.
However, if it were possible to add an expires parameter to a pipeline, this would allow
the validity of storage in the front-side cache to be defined individually for each pipeline.

As these examples show, Cocoon development takes place in a very dynamic
surrounding. In part, this is because Cocoon can be used for many different types of
applications, and it is not limited to only being a platform for XML publishing. We will
now take a look at some of the scenarios and see how additional components are making
it easier to use Cocoon to build these types of applications.

Cocoon Usage Scenarios

Even using the components that the standard Cocoon distribution provides, you have seen
how to build different types of applications ranging from a picture gallery to a full-blown
news portal using a database and additional components.

Although much of what is needed to build these types of applications is available, life
would be easier for an application developer if more components were available for such
things as authentication and if a portal concept were embedded into Cocoon that allowed
for such things as user-enabled customization or embedded content (sometimes called a
portlet).

The good news is that there is. Although they are not yet contained in a released version,
additional components were recently donated to the Cocoon project that will allow this to
happen. This chapter provides a brief overview of the areas these components cater to
and why they are important if you want to use Cocoon to do more than just publish data.

Because these additions have just made it into the code base, we refer you to the Cocoon
web site for additional information. In Chapter 3, “Getting Started with Cocoon,” we told
you how you can obtain the newest version of Cocoon from the Cocoon web site.

 347

Authenticating the User

When building an application that is accessed by different users in various roles, you
must be able to define which pipelines can be accessed by different users. To do this, you
need a way of authenticating the users against user storage such as a database.

In order to integrate the authentication into Cocoon, you need components that perform
the following jobs:

• When a particular pipeline is accessed, check whether the user has been
authenticated.

• If the user has not yet been authenticated, provide a login page.
• Authenticate the user’s data (for example, ID and password) against a database or

other storage.
• Protect access to pipelines dependent on the authentication and user’s role.

Luckily, Cocoon has components you can use to perform various tasks in this list. For
example, you can already use the sql transformer to authenticate a user against a database,
as you saw in Chapter 7.

The authentication components that were added to the current (not yet released) code
base provide a complete framework for authentication and pipeline protection.

Using authentication in your Cocoon application allows you to build solutions such as
portals. You will now see what an XML-based portal with Cocoon looks like.

The Cocoon Portal

The previous chapters in this book looked at different ways of building a portal. You
have seen what is available in Cocoon that allows you to do this.

When you compare the news portal you built over three chapters to commercial portals
that are available, it quickly becomes clear that a few things are still missing from making
your solution an alternative to other offerings.

What requirements would you need from a complete portal based on Cocoon? Let’s take
a look at some of them. First, you would need an XML-based portal definition. This
means that the portal administrator should be able to define the portal profile using XML.
It should also be possible to define different portals for various groups of users. A user
who belongs to the Management group should be able to see different information than a
user who belongs to the Trainees group. In order to be able to provide different “blocks”
of information, you would need a means of incorporating some notion of a portlet.
Typically, this term is used to describe a block of information, such as a particular news
feed integrated into the main portal page.

 348

Cocoon already provides the means to access the different information feeds or data
sources. It also provides much of the framework that is needed for a portal solution. The
few components missing from the current release would have to be developed for each
individual project.

As we mentioned at the beginning of this chapter, future Cocoon components will
provide a more-advanced framework for portals than what we have shown in this book.
Figure 12.1 shows how a portal based on these new components could look.

Figure 12.1. A Cocoon portal using additional components.

Portals based on Cocoon might be an area in which we will see a lot of growth over the
next few months and, hopefully, years.

Other usage scenarios that also appear a lot on the Cocoon mailing list are the integration
of XML databases and using Cocoon as a front end to content management systems
(CMSs).

Integrating XML Databases

Native XML databases are becoming popular as a way of easily storing XML documents.
Because Cocoon is fully based on XML, it makes sense to store the data Cocoon needs in
a database of this type. Using XML databases has several advantages over using
traditional relational databases in an XML environment:

• There’s no need to map from XML to RDBMS.

 349

• It can be used to store XML data and stylesheets.
• XML documents stored in an XML database can be accessed and searched via

XML concepts such as XPath.

Several native databases are currently available, both commercial and open-source.
Integrating the XML database into Cocoon depends on the interfaces and protocols that
the database provides.

One common form of accessing the database is via the HTTP protocol, which is already
possible using Cocoon components such as the file generator. Another form of
integration—and one we discussed in this book—is by way of a Cocoon protocol that can
be used wherever it is needed. For example, this would allow stylesheets to be stored in
the XML database and then accessed directly using the xslt transformer.

As XML databases become more widespread, we are sure to see more and more
installations in which the data and stylesheets are stored in an XML database and where
the publication is done by way of Cocoon. This tandem of data storage and publishing
forms part of an application type that is commonly called a content management system
(CMS).

Content Management System

The term “content management system” means different things to different people.
However, put simply, a content management system allows controlled access to a storage
system that contains data. This data can be actual content, such as the latest news, or
layout data, such as a stylesheet.

The idea behind a content management system is that it separates the concerns involving
the maintenance of applications such as web sites. A web site contains data and layout
information. Each different type is normally maintained by a different person or set of
people. A user who submits content to the site does not normally want to be concerned
with how the data should look when it is published. The content management system
should therefore control who can do what while logged on to the system. Also, all
changes to the data and layout should be recorded by the content management system,
and it should be possible to retrieve older versions in case they are needed.

Cocoon already offers some of the components that can be used to build content
management systems. By integrating a storage system such as an XML database, it is
already possible to build simple systems. But quite a few features are still missing.
Things such as versioning, staging, and the possibility of defining a work flow (such as
edit, test, publish) would still have to be developed as additional components.

Therefore, one common view in the Cocoon community is that a given CMS should be
integrated into Cocoon (or vice versa, depending on how you look at it). This would
combine the flexibility of Cocoon’s XML publishing with the additional features required
of a CMS.

 350

Unraveling Cocoon

When we first came up with the concept of a Cocoon book, “Unraveling Cocoon” was to
be the title. However, as the concept evolved and we discussed it with our publisher and
technical editors, we decided against using this title for two reasons.

The first reason was that somebody mentioned that if you unravel something, you destroy
it. And we certainly did not want to destroy Cocoon. Secondly, we thought this book
should be more than just a developer’s guide to Cocoon. We wanted to motivate readers
by using XML technologies to build different types of applications and show how
Cocoon can make this process easier by taking care of the hard work for you.

This last chapter has hopefully given you some idea of Cocoon’s ongoing development.
There are many good and innovative ideas in the community. As Cocoon becomes more
popular as an XML platform, the community is also growing, and additional
contributions are being made. By reading about some of these new ideas, you might think
that Cocoon is not finished or that it will change dramatically in the near future.

But when is software ever finished? The answer, of course, is never. There is always
room for improvement. But the current version of Cocoon is finished in the sense that it
is stable and that it is being used today to develop complex web applications. The Cocoon
developers ensure that each new feature is introduced in a compatible way, so the things
we presented in this book will be valid for a long time.

Using open-source projects as a base for customized solutions is becoming increasingly
popular, thanks to projects such as Cocoon. When we first developed solutions for our
customers in the early 1990s, the customer was willing to pay for a one-off solution built
from scratch. But as developers will tell you, times have changed—so much so, in fact,
that now sometimes it is the customer who tells the solution developer which technology
he should be using. Today, that technology is increasingly XML-based.

As we complete our journey through the open-source XML publishing framework, we
hope that we have unraveled some of the mysteries and provided some insight into the
“why” and not just the “how” of using Cocoon. We invite you to continue your
journey—on the web and in the mailing lists that are the Cocoon community.

 351

Appendix A. Cocoon Components

This appendix lists the sitemap components delivered with the Cocoon distribution that
you are most likely to use when developing a Cocoon application. The complete
distribution is included on the companion CD, so additional documentation on
components not listed in this chapter can be found there.

For each sitemap component type, we have provided a reference table that gives a
compact overview of all the components of this type. An in-depth description of many of
the components can be found in this book.

Some components can be configured, either by adding a configuration in the components
section of the sitemap or by specifying parameters in the pipelines section. The reference
lists all the possibilities for each component and gives a short explanation.

At the end of this appendix, we have listed some additional configuration details on
components contained in cocoon.xconf. However, changing the configuration of these
components is not as common as perhaps configuring a used generator in a pipeline.

Table A.1. Generators
Name Description

file (default) Reads an XML document from a URI.

Cacheable: Yes
html Reads an HTML document from a URI and converts the HTML format to XHTML.

Cacheable: Yes

Parameters:

copy-parameters (default false)—If this is set to true, the parameters
contained in the request are appended to the URI that the HTML is fetched from.

xpath (optional)—If this is present, only nodes conforming to this XPath expression are
included.

 352

directory Creates an XML document from a directory in the filesystem.

Cacheable: No

Parameters:

depth (optional)—Sets how deep the directory generator should delve into the directory
structure. The default value is 1.

dateFormat (optional)—Sets the format for the date attribute of each node.

root (optional)—The root pattern.

include (optional)—A pattern describing the files to be included.

exclude (optional)—A pattern specifying the files to be excluded.
imagedirectory Creates an XML document from a directory in the filesystem. Adds width and height

information to images.

Cacheable: No

Parameters:

Same as for the directory generator.
request Creates an XML document from the incoming request. The document then contains all the

request parameters, the client’s user agent, and the HTTP headers.

Cacheable: No
status Creates an XML document from available system information.

Cacheable: No
serverpages Creates a new generator from a script document, such as an XSP document. When

instantiated, the serverpages generator compiles the script into a Java class that is then used
in the pipeline. So basically, the new generator replaces the serverpages generator in the
pipeline.

Cacheable: No
script Executes arbitrary scripts such as JavaScript. The source for this generator is a file

containing statements in the scripting language.

Cacheable: No
velocity Uses the Velocity Template Engine to generate XML.

Cacheable: No
jsp Executes Java Server Pages (JSP) producing XML.

Cacheable: No
stream Reads XML from a parameter sent with the request.

 353

Cacheable: No

Parameter:

form-name (mandatory)

The name of the request parameter containing the XML data.
Table A.2. Transformers

Name Description
xslt (default) Applies style sheet transformation to an XML document.

Cacheable: Yes

Parameters/configuration:

use-request-parameters (default no)—Makes all request parameters
available in the XSLT style sheet as global XSLT parameters.

use-browser-capabilities-db (default no)—Makes all properties
from the browser capability database available as global XSLT parameters.

use-session-info (default no)—Makes information about the session
available to the style sheet using global XSLT parameters. For example: Boolean values
that indicate if a session is available, if it is valid, and so on. In addition, the session ID
is accessible.

use-cookies (default no)—Makes the cookies from the request available in the
style sheet as global XSLT parameters.

log Logs the SAX stream to a file.

Cacheable: No

Parameters:

Logfile —The name of the log file. If this is not specified, the output is written to
the standard output.

append (default no)—If this is set to yes, the output is appended to the log file.
sql Fetches data from a database.

Cacheable: No

Parameters/configuration:

use-connection – The name of the configuration from cocoon.xconf to use.

Dburl – The database URI if no connection is used.

 354

Username – The username for the database if no connection is used.

Password – The password for the user of the database.

doc-element (default rowset)—The name of the element surrounding the
fetched data.

row-element (default row)—The name of the element used for each fetched row.

namespace-uri (default http://apache.org/cocoon/SQL/2.0)—The namespace
used for the elements.

namespace-prefix (default sql)—The namespace prefix used for the
elements.

i18n Internationalization transformer.

Cacheable: No

Configuration:

catalogue-name (mandatory)—Base name of the message catalog.

catalogue-location (mandatory)—Location of the message catalogs.

untranslated-text (default untranslated-text)—Default text used
for untranslated keys.

xinclude Includes external documents according to the XInclude specification.

Cacheable: No
cinclude Includes external documents according to the Cocoon Include specification.

Cacheable: No
filter The filter transformer can be used to let only a certain number of elements through in a

given block.

Cacheable: No

Parameters:

element-name (mandatory)—The name of the element to filter.

count (default 10)—Each block has this number of elements after it is filtered.

blocknr (default 1)—The number of blocks in the resulting XML document.
writeDOMsession Makes a DOM object from SAX events and writes it to the session.

Cacheable: No

http://apache.org/cocoon/SQL/2.0

 355

Parameters:

dom-name (mandatory)—The unique name of the DOM in the session.

dom-root-element (mandatory)—The name of the root element contained in
the XML document. The whole tree with this root element is stored in the session.

readDOMsession With this transformer, a DOM object that is stored in the session can be inserted at a
given position.

Cacheable: No

Parameters:

dom-name (mandatory)—The unique name of the DOM object in the session.

trigger-element (mandatory)—If this element is found in the XML
document, the DOM from the session is appended.

position (default in)—Indicates the actual place where the DOM will be
inserted[md]before, after, or in the trigger element.

Table A.3. Serializers
Name Description

html
(default)

Converts XHTML to HTML.

Cacheable: Yes

Mime-type: text/html

Configuration:

doctype-public —Sets the documentation for the document type.

doctype-system —Specifies the public identifier to be used in the document type
declaration.

encoding —Specifies the preferred character encoding.

indent —Specifies whether the transformer may add additional white space when
outputting the result tree.

omit-xml-declaration —Specifies whether the XSLT processor should output an
XML declaration. The value must be yes or no

standalone —Specifies whether the transformer should output a standalone document
declaration. The value must be yes or no.

xml Outputs XML.

 356

Cacheable: Yes

Mime-type: text/xml

Configuration:

Same as the html serializer.
wap Outputs WML.

Cacheable: Yes

Mime-type: text/vnd.wap.wml

Configuration:

Same as the html serializer.
vrml Outputs text containing VRML.

Cacheable: Yes

Mime-type: model/vrml

Configuration:

Same as the html serializer.
svgxml Outputs XML containing SVG.

Cacheable: Yes

Mime-type: image/svg-xml

Configuration:

Same as the html serializer.
links Extracts all links and references and outputs them as text.

Cacheable: No
fo2ps Outputs postscript from XSL:FO.

Cacheable: Yes

Mime-type: application/postscript
fo2pdf Outputs PDF from XSL:FO.

Cacheable: Yes

Mime-type: application/pdf
fo2pcl Outputs PCL from XSL:FO.

 357

Cacheable: Yes

Mime-type: application/vnd.hp-PCL
svg2jpeg Creates a binary image from an SVG description.

Cacheable: Yes

Mime-type: image/jpeg
svg2png Creates a binary image from an SVG description.

Cacheable: Yes

Mime-type: image/png
Table A.4. Readers

Name Description
resource
(default)

Reads data from a URI.

Cacheable: Yes

Parameter:

expires (optional)—When specified, this determines how long in milliseconds the
document can be cached by any proxy or browser.

Table A.5. Matchers
Name Description

wildcard
(default)

Matches the request URI against a pattern.

regexp Matches the request URI against a regular expression.
request Matches based on a request parameter if it exists. The source of the match directive

indicates the parameter’s name.
sessionstate Matches based on session attributes. The value of a session attribute is matched against

the pattern.

Configuration/parameter:

attribute-name (mandatory)—The name of the session attribute to match
against.

next-page Matches based on the value of a request parameter. The value of the request parameter is
matched against the pattern.

Configuration/parameter:

parameter-name (mandatory)—The name of the request parameter to match
against.

referer-match Matches based on the value of a request header.

Configuration:

 358

header-name (mandatory)—The name of the header to match against.

Table A.6. Selectors
Name Description

browser
(default)

Tests the client’s user agent against a given value.

Configuration (mandatory):

For each possible user agent, an identifier can be set that can be used in the following tests:

<browser name="explorer" useragent="MSIE"/>

parameter Tests the value of a sitemap parameter.

Parameter:

parameter-selector-test (mandatory)—The name of the sitemap
parameter to test, such as {1}.

Table A.7. Actions
Name Description

locale Makes the request’s locale information (language, country, variant) available to the
sitemap/pipeline.

request Makes some request details available to the sitemap:

{context} is the servlet’s context path.

{requestURI} is the requested URI without parameters.

{requestQuery} is the query string, as in "?param1=test".

Additionally, all request parameters can be made available for use in the sitemap if the
parameter parameters is set to true. A variable is created for each request
parameter (only if it doesn’t already exist) with the same name as the parameter itself.

Default values can be set for request parameters by including a sitemap parameter named
default.parameter-name .

form-validator The action used to validate request parameters. The parameters are described via an
external XML.

session-isvalid Checks to see if a session exists and if the current session is still valid.
resource-exists Tests if a resource exists.

Parameter:

 359

url (mandatory)—The URI of the resource to test.

Common Components in cocoon.xconf

The final section of this appendix contains a brief overview of the most important
components and their configuration in cocoon.xconf. The most important ones are the
parser, the stream pipeline, and the event pipeline. For each component, we give a brief
description and show the implementations to choose from.

In addition, we show some of the possible extensions of Cocoon, such as adding
protocols, adding database connections, and XSP logic sheets. Each entry contains an
example showing how the configuration in cocoon.xconf should look.

The Parser

The parser component is used to parse all XML documents. The default parser is
org.apache.cocoon.components.parser.JaxpParser. This parser uses the JAXP 1.1
API. If the JAXP version installed does not conform to 1.1,
org.apache.cocoon.com-ponents.parser.XercesParser should be used instead.
Because the parser is also used to parse cocoon.xconf itself, the following system
property should be set when the servlet engine is started:
org.apache.cocoon.components.parser.Parser=org.
apache.cocoon.components.parser.XercesParser.

• org.apache.cocoon.components.parser.JaxpParser (default)

A JAXP 1.1-compliant parser.

Example:

<parser class="org.apache.cocoon.components.parser.JaxpParser"/>

• org.apache.cocoon.components.parser.XercesParser

The Apache Xerces parser.

Example:

<parser class="org.apache.cocoon.components.parser.XercesParser"/>

The Stream Pipeline

The stream pipeline is a component used by the Cocoon processor to represent a
processing pipeline consisting of either a reader or an event pipeline in combination with

 360

a serializer. The stream pipeline produces the character stream that is sent back to the
client.

Currently there are two alternatives: the caching and the noncaching stream pipeline.

• org.apache.cocoon.components.pipeline.CachingStreamPip
eline (default)

The result is cached for further requests (if possible).

Example:

<stream-pipeline

class="org.apache.cocoon.components.pipeline.CachingStreamPipeline"
/>

• org.apache.cocoon.components.pipeline.NonCachingStream
Pipeline

The result of the request is never cached.

Example:

<stream-pipeline

class="org.apache.cocoon.components.pipeline.NonCachingStreamPipeli
ne"/>

The Event Pipeline

The event pipeline is a component used by the Cocoon processor to represent an XML
processing pipeline consisting of a generator and possibly some transformers. The event
pipeline produces SAX events that are consumed by the stream pipeline.

Currently there are two alternatives: the caching and the noncaching stream pipeline.

• org.apache.cocoon.components.pipeline.CachingEventPipe
line (default)

The result is cached for further requests (if possible). Example:

<event-pipeline

class="org.apache.cocoon.components.pipeline.CachingEventPipeline"/
>

• org.apache.cocoon.components.pipeline.NonCachingEventP
ipeline

 361

The result of the request is never cached.

Example:

<event-pipeline

class="org.apache.cocoon.components.pipeline.NonCachingEventPipelin
e"/>

The Source Handler

The source handler is the central component for resolving the custom URI protocols, such
as cocoon: and resource:. It is possible to add additional protocols by adding a source
factory for the protocol to the handler’s configuration:

<source-handler>
 <protocol name="zip" class="cxa.components.source.ZipSourceFactory"/>
</source-handler>

Chapter 9, “Developing Components for Cocoon,” contains more information about
developing custom protocols.

XSP Logic Sheets

All built-in XSP logic sheets are configured in cocoon.xconf. The markup-languages
component manages these logic sheets. A new logic sheet can be added as a

configuration inside a builtin-logicsheet block. The following excerpt from
cocoon.xconf shows the configuration for the xsp-request logic sheet:

<markup-languages>
 <xsp-language name="xsp">
 <parameter name="prefix" value="xsp"/>
 <parameter name="uri" value="http://apache.org/xsp"/>

 <builtin-logicsheet>
 <parameter name="prefix" value="xsp-request"/>
 <parameter name="uri"

value="http://apache.org/xsp/request/2.0"/>
 <parameter name="href"

value="resource://org/apache/cocoon/components/language/
markup/xsp/java/request.xsl"/>
 </builtin-logicsheet>
 ...

 </target-language>
 </xsp-language>

 ...
</markup-languages>

 362

A logic sheet needs a namespace with a prefix. Using this prefix and namespace, an XSP
document can use the tags defined in the logic sheet. The third mandatory configuration
of a logic sheet is the location where Cocoon can find the logic sheet. More information
about XSP and logic sheets is contained in Chapter 10, “Cocoon News Portal: Advanced
Version.”

Data Sources

The connections to an external database can be configured in cocoon.xconf. A connection
gets a unique name and can then be used in other components such as the sql transformer.
A sample data source definition looks like this:

<datasources>
 <jdbc name="portal">
 <dburl>jdbc:hsqldb:hsql://localhost:9002</dburl>
 <user>sa</user>
 <password></password>
 </jdbc>
</datasources>

The important information for a data source includes the unique name (here it’s portal),
the URL to access the database, and possibly a database user and password. More
information is contained in Chapter 7, “Cocoon News Portal: Extended Version.”

 363

Appendix B. Cocoon API Specifications

Together with the previous appendix, this part of the book is the “reference manual” you
can use when writing applications or extending Cocoon with your own components.
Chapters 8 and 9 contain the relevant information on Cocoon’s internal workings from a
developer perspective. They show you how to develop new components that can then be
added to the framework.

This appendix consists of the Java documentation as extracted from Release 2.0 of
Cocoon, contained on the companion CD. We have reduced the number of interfaces and
classes to the ones we consider to be essential for any Cocoon developer. The CD
contains the complete documentation for all the classes contained in Cocoon.

Avalon Framework and LogKit

We will start with an overview of the most common classes and interfaces of the Avalon
Framework and the Avalon LogKit.

Package org.apache.log

This package contains all the classes of the Avalon LogKit. In order to be able to use the
LogKit, we only need to look at the Logger class.

Class Logger

This is the object that the client interacts with to perform any logging.

Methods

public final boolean isDebugEnabled()
 Determine if messages of priority DEBUG will be logged.
Returns
 true if DEBUG messages will be logged

public final void debug(String message, Throwable throwable)

 364

 Log a debug priority event.
Parameters
 message - the message
 throwable - the throwable

public final void debug(String message)
 Log a debug priority event.
Parameters
 message - the message

public final boolean isInfoEnabled()
 Determine if messages of priority INFO will be logged.
Returns
 true if INFO messages will be logged

public final void info(String message, Throwable throwable)
 Log a info priority event.
Parameters
 message - the message

public final void info(String message)
 Log a info priority event.
Parameters
 message - the message

public final boolean isWarnEnabled()
 Determine if messages of priority WARN will be logged.
Returns
 true if WARN messages will be logged

public final void warn(String message, Throwable throwable)
 Log a warn priority event.
Parameters
 message - the message
 throwable - the throwable

public final void warn(String message)
 Log a warn priority event.
Parameters
 message - the message
public final boolean isErrorEnabled()
 Determine if messages of priority ERROR will be logged.
Returns
 true if ERROR messages will be logged

public final void error(String message, Throwable throwable)
 Log a error priority event.
Parameters
 message - the message
 throwable - the throwable

public final void error(String message)
Log a error priority event.
Parameters
 message - the message

public final boolean isFatalErrorEnabled()

 365

 Determine if messages of priority FATAL_ERROR will be logged.
Returns
 true if FATAL_ERROR messages will be logged

public final void fatalError(String message, Throwable throwable)
 Log a fatalError priority event.
Parameters
 message - the message
 throwable - the throwable

public final void fatalError(String message)
 Log a fatalError priority event.
Parameters
 message - the message

public final void setAdditivity(boolean additivity)
 Make this logger additive. ie Send all log events to parent loggers
 LogTargets regardless of whether or not the LogTargets have been

overidden.
 This is derived from Log4js notion of Additivity.
Parameters
 additivity - true to make logger additive, false otherwise

public final void log(Priority priority, String message,
 Throwable throwable)
 Log a event at specific priority with a certain message and throwable.
Parameters
 message - the message
 priority - the priority
 throwable - the throwable

public final void log(Priority priority, String message)
 Log a event at specific priority with a certain message.
Parameters
 message - the message
 priority - the priority
public synchronized void setPriority(Priority priority)
 Set the priority for this logger.
Parameters
 priority - the priority

public synchronized void unsetPriority()
 Unset the priority of Logger. (Thus it will use it's parent's priority

or
 DEBUG if no parent.

public synchronized void unsetPriority(boolean recursive)
 Unset the priority of Logger. (Thus it will use it's parent's priority

or
 DEBUG if no parent. If recursive is true unset priorities of all child
 loggers.
Parameters
 recursive - true to unset priority of all child loggers

public synchronized void setLogTargets(LogTarget[] logTargets)
 Set the log targets for this logger.
Parameters

 366

 logTargets - the Log Targets

public synchronized void unsetLogTargets()
 Unset the logtargets for this logger. This logger (and thus all child

loggers who don't specify logtargets) will inherit from the parents
LogTargets.

public synchronized void unsetLogTargets(boolean recursive)
 Unset the logtargets for this logger and all child loggers if recursive

is set. The loggers unset (and all child loggers who don't specify
logtargets) will inherit from the parents LogTargets.

public synchronized org.apache.log.Logger[] getChildren()
 Get all the child Loggers of current logger.
Returns
 the child loggers

public synchronized Logger getChildLogger(String subCategory)
 Create a new child logger. The category of child logger is
 [current-category].subcategory
Parameters
 subCategory - the subcategory of this logger
Returns
 the new logger
Throws
 IllegalArgumentException - if subCategory has an empty element name

public final org.apache.log.Priority getPriority()
 Retrieve priority associated with Logger.
Returns
 the loggers priority

public final java.lang.String getCategory()
 Retrieve category associated with logger.
Returns
 the Category

public org.apache.log.LogTarget[] getLogTargets()
 Get a copy of log targets for this logger.
Returns
 the child loggers

Fields

public static final CATEGORY_SEPARATOR

Package org.apache.avalon.framework.activity

This package contains some of Avalon’s life cycle interfaces. Their functionality is
acti-vating and deactivating the component.

Interface Disposable

 367

The Disposable interface is used when components need to deallocate and dispose of
resources before their destruction.

Methods

public void dispose()
 The dispose operation is called at the end of a components lifecycle.
 This method will be called after Startable.stop() method
 (if implemented by component). Components use this method
 to release and destroy any resources that the Component owns.

Interface Initializable

The Initializable interface is used by components that need to allocate resources
before becoming active.

Methods

public void initialize()
 Initialize the component. Initialization includes allocating any

resources
 required throughout the components lifecycle.
Throws
 Exception - if an error occurs.

Package org.apache.avalon.framework.component

This is the main package for Avalon components. It contains the basic Component
interface and all other interfaces dealing with component handling, such as
ComponentManager.

Interface Component

This interface identifies classes that can be used as components by a Composable object.

The contract surrounding the component is that it can be used by other classes. A
component is the basic building block of the Avalon Framework. When a class
implements this interface, it allows itself to be managed by a ComponentManager and
used by an outside element called a composable. The composable must know what type
of component it is accessing, so it recasts the component into the type it needs.

In order for a component to be useful, you must either extend this interface or implement
this interface in conjunction with one that has methods. The new interface is the contract
with the composable that this is a particular type of component, and as such it can
perform those functions on that type of component.

 368

For example, suppose you want a component that performs a logging function. You
extend the component to be a LoggingComponent:

interface LoggingComponent extends Component {log(String message); }

Now all composable components that want to use this type of component recast the
component into a LoggingComponent, and the composable can use the log method.

Interface ComponentManager

A ComponentManager selects components based on a role. The contract is that all the
components implement the differing roles, and there is one component per role. If you
need to select one of several components that implement the same role, you need to use a
ComponentSelector. A role is usually the full interface name. A role can be better
understood through the analogy of a play. There are many different roles in a script. Any
actor or actress can play any given part, and you get basically the same results (phrases
said, movements made, and so on). However, the nuances of the performance are
different. Here is a list of things that might be considered the different roles:

• InputAdaptor and OutputAdaptor
• Store and pool

The ComponentManager does not specify the methodology of getting the component,
merely the interface used to get it. Therefore, the ComponentManager can be
implemented with a factory pattern, an object pool, or a simple hash table. See also:

• org.apache.avalon.framework.component.Component
• org.apache.avalon.framework.component.Composable
• org.apache.avalon.framework.component.ComponentSelector

Methods

public Component lookup(String role)
 Get the Component associated with the given role. For instance, If the

ComponentManager had a LoggerComponent stored and referenced by role,
I would use the following call: try {MyComponent log; myComponent =
(MyComponent)manager.lookup(MyComponent.ROLE); }catch (...) {... }

Parameters
 name - The role name of the Component to retrieve.
Throws
 ComponentException - if an error occurs

public boolean hasComponent(String role)
 Check to see if a Component exists for a role.
Parameters
 role - a string identifying the role to check.
Returns
 True if the component exists, False if it does not.

 369

public void release(Component component)
 Return the Component when you are finished with it. This allows the
 ComponentManager to handle the End-Of-Life Lifecycle events associated

with the Component. Please note, that no Exceptions should be thrown
at this

point. This is to allow easy use of the ComponentManager system without
having to trap Exceptions on a release.
Parameters
 component - The Component we are releasing.

Interface ComponentSelector

A ComponentSelector selects components based on a hint. The contract is that all the
components implement the same role. A role can be better understood through the
analogy of a play. There are many different roles in a script. Any actor or actress can play
any given part, and you get basically the same results (phrases said, movements made,
and so on). However, the nuances of the performance are different. Here is a list of things
that might be considered the same role:

• XMLInputAdaptor and PropertyInputAdaptor
• FileGenerator and SQLGenerator

The ComponentSelector does not specify the methodology of getting the component,
merely the interface used to get it. Therefore, the ComponentSelector can be
implemented with a factory pattern, an object pool, or a simple hash table.

See also:

• org.apache.avalon.framework.component.Component
• org.apache.avalon.framework.component.Composable
• org.apache.avalon.framework.component.ComponentManager

Inheritance

implements org.apache.avalon.framework.component.Component

Methods

public Component select(Object hint)
 Select the Component associated with the given hint. For instance, If

the ComponentSelector has a Generator stored and referenced by a URL,
I would

use the following call:
 try {
 Generator input;
 input = (Generator)selector.select(new URL("foo://demo/url"));
 }
 catch (...) {... }

 370

Parameters
 name - A hint to retrieve the correct Component.
Throws
 ComponentNotFoundException - If the given role is not associated with

a Component. ComponentNotAccessibleException - If a Component instance
cannot be created.

public boolean hasComponent(Object hint)
 Check to see if a Component exists for a hint.
Parameters
 role - a string identifying the role to check.
Returns
 True if the component exists, False if it does not.

public void release(Component component)
 Return the Component when you are finished with it. This allows the
 ComponentManager to handle the End-Of-Life Lifecycle events associated

with the Component. Please note, that no Exceptions should be thrown
at this

point. This is to allow easy use of the ComponentManager system without
having to trap Exceptions on a release.
Parameters
 component - The Component we are releasing.

Interface Composable

A composer is a class that needs to connect to software components using a “role”
abstraction, thus not depending on particular implementations but on behavioral
interfaces.

The contract surrounding a composable is that it is a user. The composable can use
components managed by the ComponentManager it was initialized with. As part of the
contract with the system, the instantiating entity must call the compose method before the
composable can be considered valid.

Methods

public void compose(ComponentManager componentManager)
 Pass the ComponentManager to the composer. The Composable implementation
 should use the specified ComponentManager to acquire the components it
 needs for execution.
Parameters
 manager - The ComponentManager which this Composable uses.

Class ComponentException

The exception is thrown to indicate a problem with components. It is usually thrown by
ComponentManager or ComponentSelector.

Inheritance

 371

extends org.apache.avalon.framework.CascadingException

Constructors

public ComponentException(
 String message,
 Throwable throwable)

Construct a new ComponentException instance.

Parameters
 message - the exception message
 throwable - the throwable

public ComponentException(
 String message)

Construct a new ComponentException instance.
Parameters
 message - the exception message

Package org.apache.avalon.framework.configuration

This package holds the life cycle interfaces for component configuration.

Interface Configurable

This interface should be implemented by classes that need to be configured with custom
parameters before initialization.

The contract surrounding a configurable is that the instantiating entity must call the
configure method before this object can be considered valid. The configure method
must be called after the constructor and before any other method. Note that this interface
is incompatible with Parameterizable.

Methods

public void configure(Configuration configuration)
 Pass the Configuration to the Configurable class. This method must always

be called after the constructor and before any other method.
Parameters
 configuration - the class configurations.

Interface Configuration

Configuration is an interface encapsulating a configuration node used to retrieve
configuration values. This interface prevents applications from modifying their own
configurations.

 372

The contract surrounding the configuration is that after it is created, information never
changes. The configuration is built by the SAXConfigurationBuilder and the
ConfigurationImpl helper classes.

Methods

public String getName()
 Return the name of the node.
Returns
 name of the Configuration node.

Public String getLocation()
 Return a string describing location of Configuration. Location can be
different for different mediums (ie "file:line" for normal XML files or

"table:primary-key" for DB based configurations);
Returns
 a string describing location of Configuration

public Configuration getChild(String child)
 Return a new Configuration instance encapsulating the specified child

node.
Parameters
 child - The name of the child node.
Returns
 Configuration

public Configuration getChild(String child,
 boolean createNew)
 Return a new Configuration instance encapsulating the specified child

node.
Parameters
 child - The name of the child node.
Returns
 Configuration

public Configuration[] getChildren()
 Return an Array of Configuration elements containing all node children.
Returns
 The child nodes with name
public Configuration[] getChildren(String name)
 Return an Array of Configuration elements containing all node children

with the specified name.
Parameters
 name - The name of the children to get.
Returns
 The child nodes with name

public String[] getAttributeNames()
 Return an array of all attribute names.

public String getAttribute(String paramName)
 Return the value of specified attribute.
Parameters
 paramName - The name of the parameter you ask the value of.

 373

Returns
 String value of attribute.
Throws
 ConfigurationException - If no attribute with that name exists.

public int getAttributeAsInteger(String paramName)
 Return the int value of the specified attribute contained in this node.
Parameters
 paramName - The name of the parameter you ask the value of.
Returns
 in value of attribute
Throws
 ConfigurationException - If no parameter with that name exists.
 or if conversion to int fails.

public long getAttributeAsLong(String name)
 Returns the value of the attribute specified by its name as a long.
Parameters
 paramName - The name of the parameter you ask the value of.
Returns
 long value of attribute
Throws
 ConfigurationException - If no parameter with that name exists. or if
 conversion to long fails.

public float getAttributeAsFloat(String paramName)
 Return the float value of the specified parameter contained in this node.
Parameters
 paramName - The name of the parameter you ask the value of.
Returns
 float value of attribute
Throws
 ConfigurationException - If no parameter with that name exists. or if

conversion to float fails.
public boolean getAttributeAsBoolean(String paramName)
 Return the boolean value of the specified parameter contained in this

node.

Parameters
 paramName - The name of the parameter you ask the value of.
Returns
 boolean value of attribute
Throws
 ConfigurationException - If no parameter with that name exists. or if

conversion to boolean fails.

public String getValue()
 Return the String value of the node.
Returns
 the value of the node.

public int getValueAsInteger()
Return the int value of the node.
Returns
 the value of the node.
Throws
 ConfigurationException - If conversion to int fails.

 374

public float getValueAsFloat()
Return the float value of the node.
Returns
 the value of the node.
Throws
 ConfigurationException - If conversion to float fails.

public boolean getValueAsBoolean()
Return the boolean value of the node.

Returns
 the value of the node.
Throws
 ConfigurationException - If conversion to boolean fails.

public long getValueAsLong()
Return the long value of the node.

Returns
 the value of the node.
Throws
 ConfigurationException - If conversion to long fails.

public String getValue(String defaultValue)
 Returns the value of the configuration element as a String.
 If the configuration value is not set, the default value will be used.
Parameters
 defaultValue - The default value desired.
Returns
 String value of the Configuration, or default if none specified.

public int getValueAsInteger(int defaultValue)
 Returns the value of the configuration element as an int.
 If the configuration value is not set, the default value will be used.
Parameters
 defaultValue - The default value desired.
Returns
 int value of the Configuration, or default if none specified.

public long getValueAsLong(long defaultValue)
 Returns the value of the configuration element as a long.
 If the configuration value is not set, the default value will be used.
Parameters
 defaultValue - The default value desired.
Returns
 long value of the Configuration, or default if none specified.

public float getValueAsFloat(float defaultValue)
 Returns the value of the configuration element as a float.
 If the configuration value is not set, the default value will be used.
Parameters
 defaultValue - The default value desired.
Returns
 float value of the Configuration, or default if none specified.

public boolean getValueAsBoolean(boolean defaultValue)

 375

 Returns the value of the configuration element as a boolean.
 If the configuration value is not set, the default value will be used.
Parameters
 defaultValue - The default value desired.
Returns
 boolean value of the Configuration, or default if none specified.

public String getAttribute(String name,
 String defaultValue)
 Returns the value of the attribute specified by its name as a String,
 or the default value if no attribute by that name exists or is empty.
Parameters
 name - The name of the attribute you ask the value of.
 defaultValue - The default value desired.
Returns
 String value of attribute. It will return the default value if the
 named attribute does not exist, or if the value is not set.

public int getAttributeAsInteger(String name, int defaultValue)
 Returns the value of the attribute specified by its name as a int,
 or the default value if no attribute by that name exists or is empty.
Parameters
 name - The name of the attribute you ask the value of.
 defaultValue - The default value desired.
Returns
 int value of attribute. It will return the default value
 if the named attribute does not exist, or if the value is not set.

public long getAttributeAsLong(String name,
 long defaultValue)
 Returns the value of the attribute specified by its name as a long,
 or the default value if no attribute by that name exists or is empty.
Parameters
 name - The name of the attribute you ask the value of.
 defaultValue - The default value desired.
Returns
 long value of attribute. It will return the default value if the
 named attribute does not exist, or if the value is not set.

public float getAttributeAsFloat(String name,
 float defaultValue)
 Returns the value of the attribute specified by its name as a float,
 or the default value if no attribute by that name exists or is empty.
Parameters
 name - The name of the attribute you ask the value of.
 defaultValue - The default value desired.
Returns
 float value of attribute. It will return the default value if the
 named attribute does not exist, or if the value is not set.

public boolean getAttributeAsBoolean(String name,
 boolean defaultValue)
 Returns the value of the attribute specified by its name as a boolean,
 or the default value if no attribute by that name exists or is empty.
Parameters
 name - The name of the attribute you ask the value of.
 defaultValue - The default value desired.

 376

Returns
 boolean value of attribute. It will return the default value
 if the named attribute does not exist, or if the value is not set.

Class ConfigurationException

This class is thrown when a Configurable component cannot be configured properly or
if a value cannot be retrieved properly.

Inheritance

extends org.apache.avalon.framework.CascadingException

Constructors

public ConfigurationException(String message)
 Construct a new ConfigurationException instance.
Parameters
 message - The detail message for this exception.

public ConfigurationException(String message,
 Throwable throwable)
 Construct a new ConfigurationException instance.
Parameters
 message - The detail message for this exception.
 throwable - the root cause of the exception

Package org.apache.avalon.framework.context

This Avalon package contains all the interfaces for the Contextualizable life cycle
interface.

Interface Context

The context is the interface through which the component and its container communicate.
Each container-component relationship also involves defining a contract between two
entities. This contract specifies the services, settings, and information that are supplied by
the container to the component. This relationship should be documented in a well-known
place. It is sometimes convenient to derive from Context to provide a particular style of
context for your component-container relationship. The documentation for required
entries in context can then be defined there. (Examples include Cocoon Context,
MailetContext, and BlockContext.)

Methods

public Object get(Object key)
 Retrieve an object from Context.
Parameters

 377

 key - the key into context
Returns
 the object
Throws
 ContextException - if object not found. Note that this means that either
 Component is asking for invalid entry or the Container is not living
 up to contract.

Interface Contextualizable

This interface should be implemented by components that need a context to work. The
context contains a runtime-generated object provided by the container to this component.

Methods

public void contextualize(Context context)
 Pass the Context to the component. This method is called after the
 Loggable.setLogger() (if present) method and before any other method.
Parameters
 context - the context
Throws
 ContextException - if context is invalid

Class ContextException

This exception signals a badly formed context. This can be thrown by a Context object
when an entry is not found. It can also be thrown manually in contextualize() when a
component detects a malformed context value.

Inheritance

extends org.apache.avalon.framework.CascadingException

Constructors

public ContextException(String message)
 Construct a new ContextException instance.
Parameters
 message - The detail message for this exception.

public ContextException(String message,
 Throwable throwable)
 Construct a new ContextException instance.
Parameters
 message - The detail message for this exception.
 throwable - the root cause of the exception

 378

Package org.apache.avalon.framework.logger

The Avalon Framework supports components that want to use the LogKit to log
messages.

Interface Loggable

Components that need to log can implement this interface so that they will receive
loggers.

Methods

public void setLogger(Logger logger)
 Provide component with a logger.
Parameters
 logger - the logger

Abstract Class AbstractLoggable

This is a utility class that allows the construction of simple components that perform
logging.

Inheritance

implements org.apache.avalon.framework.logger.Loggable

Constructors

public AbstractLoggable()

Methods

public void setLogger(Logger logger)
 Set the components logger.
Parameters
 logger - the logger

protected final org.apache.log.Logger getLogger()
 Helper method to allow sub-classes to acquire logger.
Returns
 the Logger

protected void setupLogger(Object component)
 Helper method to setup other components with same logger.
Parameters
 component - the component to pass logger object to

 379

protected void setupLogger(Object component,
 String subCategory)
 Helper method to setup other components with logger. The logger has the
 subcategory of this components logger.
Parameters
 component - the component to pass logger object to
 subCategory - the subcategory to use (may be null)

protected void setupLogger(Object component,
 Logger logger)
 Helper method to setup other components with logger.
Parameters
 component - the component to pass logger object to
 logger - the Logger

Package org.apache.avalon.framework.parameters

This package is another way of configuring a component.

Interface Parameterizable

Components should implement this interface if they want to be provided with parameters
during startup. This interface is called after Composable.compose() and before
Initializable.initialize(). It is incompatible with the Configurable interface,
because a component can implement only one life cycle interface dealing with
configuration.

Methods

public void parameterize(Parameters parameters)
 Provide component with parameters.
Parameters
 parameters - the parameters
Throws
 ParameterException - if parameters are invalid

Class Parameters

The Parameters class represents a set of key-value pairs. Each value stored in
Parameters has a key. This class is similar to java.util. Properties with convenience
methods access property values by type.

Inheritance

implements java.io.Serializable

Constructors

 380

public Parameters()

Methods

Public String setParameter(String name,
 String value)
 Set the String value of a specified parameter.
 If the specified value is null the parameter is removed.
Returns
 The previous value of the parameter or null.

public java.util.Iterator getParameterNames()
 Return an Enumeration view of all parameter names.
Returns
 a iterator of parameter names

public String[] getNames()
 Retrieve an array of all parameter names.
Returns
 the parameters names
public boolean isParameter(String name)
 Test if the specified parameter can be retrieved.
Parameters
 name - the parameter name
Returns
 true if parameter is a name

public String getParameter(String name)
 Retrieve the String value of the specified parameter.
 If the specified parameter cannot be found, an exception is thrown.
Parameters
 name - the name of parameter
Returns
 the value of parameter
Throws
 -

public String getParameter(String name,
 String defaultValue)
 Retrieve the String value of the specified parameter.
 If the specified parameter cannot be found, defaultValue is returned.
Parameters
 name - the name of parameter
 defaultValue - the default value, returned if parameter does not exist
Returns
 the value of parameter

public int getParameterAsInteger(String name)
 Retrieve the int value of the specified parameter.
 If the specified parameter cannot be found, an exception is thrown.
 Hexadecimal numbers begin with 0x, Octal numbers begin with 0o and
 binary numbers begin with 0b, all other values are assumed to be decimal.
Parameters
 name - the name of parameter
Returns

 381

 the integer parameter type
Throws
 -

public int getParameterAsInteger(String name,
 int defaultValue)
 Retrieve the int value of the specified parameter.
 If the specified parameter cannot be found, defaultValue is returned.
 Hexadecimal numbers begin with 0x, Octal numbers begin with 0o and
 binary numbers begin with 0b, all other values are assumed to be decimal.
Parameters
 name - the name of parameter
 defaultValue - value returned if parameter does not exist or is of wrong

type
Returns
 the integer parameter type
public long getParameterAsLong(String name)
 Retrieve the long value of the specified parameter.
 If the specified parameter cannot be found, an exception is thrown.
 Hexadecimal numbers begin with 0x, Octal numbers begin with 0o and binary
 numbers begin with 0b, all other values are assumed to be decimal.
Parameters
 name - the name of parameter
Returns
 the long parameter type
Throws
 -

public long getParameterAsLong(String name,
 long defaultValue)
 Retrieve the long value of the specified parameter.
 If the specified parameter cannot be found, defaultValue is returned.
 Hexadecimal numbers begin with 0x, Octal numbers begin with 0o and binary
 numbers begin with 0b, all other values are assumed to be decimal.
Parameters
 name - the name of parameter
 defaultValue - value returned if parameter does not exist or is of wrong

type
Returns
 the long parameter type

public float getParameterAsFloat(String name)
 Retrieve the float value of the specified parameter.
 If the specified parameter cannot be found, an exception is thrown.
Parameters
 name - the parameter name
Returns
 the value
Throws
 -

public float getParameterAsFloat(String name,
 float defaultValue)
 Retrieve the float value of the specified parameter.
 If the specified parameter cannot be found, defaultValue is returned.
Parameters
 name - the parameter name

 382

 defaultValue - the default value if parameter does not exist or is of
 wrong type
Returns
 the value

public boolean getParameterAsBoolean(String name)
 Retrieve the boolean value of the specified parameter.
 If the specified parameter cannot be found, an exception is thrown.
Parameters
 name - the parameter name
Returns
 the value
Throws
 -

public boolean getParameterAsBoolean(String name,
 boolean defaultValue)
 Retrieve the boolean value of the specified parameter.
 If the specified parameter cannot be found, defaultValue is returned.
Parameters
 name - the parameter name
 defaultValue - the default value if parameter does not exist or is of
 wrong type
Returns
 the value

public Parameters merge(Parameters other)
 Merge parameters from another Parameters instance into this.
Parameters
 other - the other Parameters
Returns
 This Parameters instance.

public void makeReadOnly()

protected final void checkWriteable()

public static Parameters fromConfiguration(Configuration configuration)
 Create a Parameters object from a Configuration object.
Parameters
 configuration - the Configuration
Returns
 This Parameters instance.

public static Parameters fromProperties(Properties properties)
 Create a Parameters object from a Properties object.
Parameters
 properties - the Properties
Returns
 This Parameters instance.

Class ParameterException

Thrown when a Parameterizable component cannot be parameterized properly or if a
value cannot be retrieved properly.

 383

Inheritance

extends org.apache.avalon.framework.CascadingException

Constructors

public ParameterException(String message)
 Construct a new ParameterException instance.
Parameters
 message - The detail message for this exception.

public ParameterException(String message,
 Throwable throwable)
 Construct a new ParameterException instance.
Parameters
 message - The detail message for this exception.
 throwable - the root cause of the exception

Package org.apache.avalon.framework.thread

The two important component lifetime interfaces are SingleThreaded and ThreadSafe.

Interface SingleThreaded

This interface marks a component as SingleThreaded. This interface is incompatible
with ThreadSafe.

Interface ThreadSafe

This interface marks a component as ThreadSafe or reentrant. This interface is
incompatible with SingleThreaded.

Cocoon

This section contains all the relevant classes and interfaces of the Cocoon core that are
needed to develop new components.

Package org.apache.cocoon

Cocoon’s main package. It contains the Processor interface and some important
constants.

Interface Constants

Fields

 384

public static final NAME
public static final VERSION
public static final COMPLETE_NAME
public static final CONF_VERSION
public static final YEAR
public static final RELOAD_PARAM
public static final SHOWTIME_PARAM
public static final VIEW_PARAM
public static final ACTION_PARAM
public static final TEMPDIR_PROPERTY
public static final DEFAULT_CONTEXT_DIR
public static final DEFAULT_DEST_DIR
public static final DEFAULT_WORK_DIR
public static final DEFAULT_CONF_DIR
public static final PARSER_PROPERTY
public static final DEFAULT_PARSER
public static final XSP_PREFIX
public static final XSP_URI
public static final XSP_REQUEST PREFIX
public static final XSP_REQUEST URI
public static final XSP_RESPONSE PREFIX
public static final XSP_RESPONSE_URI
public static final XSP_COOKIE_PREFIX
public static final XSP_COOKIE_URI
public static final XSP_FORMVALIDATOR_PATH
public static final XSP_FORMVALIDATOR_PREFIX
public static final XSP_FORMVALIDATOR_URI
public static final XML_NAMESPACE_URI
public static final LINK_CONTENT_TYPE
public static final LINK_VIEW
public static final LINK_CRAWLING_ROLE
public static final REQUEST_OBJECT
public static final RESPONSE_OBJECT
public static final CONTEXT_OBJECT
public static final LINK_OBJECT
public static final INDEX_URI
public static final ERROR_NAMESPACE_URI
public static final ERROR_NAMESPACE_PREFIX
public static final CONTEXT_ENVIRONMENT_CONTEXT
public static final CONTEXT_CLASS_LOADER
public static final CONTEXT_WORK_DIR
public static final CONTEXT_UPLOAD_DIR
public static final CONTEXT_CACHE_DIR
public static final CONTEXT_CLASSPATH
public static final CONTEXT_CONFIG_URL
public static final DESCRIPTOR_RELOADABLE_DEFAULT

Interface Processor

The Processor is the central Cocoon object. In other words, this is Cocoon. A processor
processes a request and generates the response for this request.

Methods

 385

public boolean process(Environment environment)
 Process the given Environment producing the output.
Returns
 If the processing is successful true is returned. If not match is found

in the sitemap false is returned.
Throws
 ResourceNotFoundException - If a sitemap component tries to access a

resource
 which can not be found, e.g. the generator
 ConnectionResetException If the connection was reset

public boolean process(Environment environment,
 StreamPipeline pipeline,
 EventPipeline eventPipeline)
 Process the given Environment to assemble a StreamPipeline and an
EventPipeline.

Fields

public static final ROLE

Class ProcessingException

This exception is thrown every time there is a problem with processing a request.

Inheritance

extends org.apache.avalon.framework.CascadingException

Constructors

public ProcessingException(String message)
 Construct a new ProcessingException instance.

public ProcessingException(Exception ex)
 Creates a new ProcessingException instance.
Parameters
 ex - an Exception value

public ProcessingException(String message, Throwable t)
 Construct a new ProcessingException that references a parent Exception.

Class ResourceNotFoundException

This exception is thrown every time there is a problem with finding a resource.

Inheritance

 386

extends org.apache.cocoon.ProcessingException

Constructors

public ResourceNotFoundException(String message)
 Construct a new ResourceNotFoundException instance.

public ResourceNotFoundException(String message, Throwable t)
 Construct a new ResourceNotFoundException that references a parent

Exception.

Package org.apache.cocoon.acting

All the classes that belong to actions are in this package.

Interface Action

This interface describes the action component used in the sitemap.

Inheritance

implements org.apache.avalon.framework.component.Component

Methods

public java.util.Map act(Redirector redirector,
 SourceResolver resolver,
 Map objectModel,
 String source,
 Parameters par)
 Controls the processing against some values of the Dictionary objectModel

and returns a Map object with values used in subsequent sitemap
substitution patterns. NOTE: This interface is designed so that
implementations can be ThreadSafe. When an action is ThreadSafe, only
one instance serves all requests: this reduces memory usage and avoids
pooling.

Parameters
 resolver - The SourceResolver in charge
 objectModel - The Map with object of the calling environment which can
 be used to select values this controller may need (ie Request, Response).
 source - A source String to the Action
 parameters - The Parameters for this invocation
Returns
 Map The returned Map object with sitemap substitution values which can
 be used in subsequent elements attributes like src= using a xpath like
 expression:src="mydir/myval/foo" If the return value is null the
 processing inside the <map:act> element of the sitemap will be skipped.
Throws
 Exception - Indicates something is totally wrong

 387

Fields

public static final ROLE

Abstract Class AbstractAction

AbstractAction gives you the infrastructure to easily deploy more actions. In order to
get at the logger, use getLogger().

Inheritance

extends org.apache.avalon.framework.logger.AbstractLoggable
implements org.apache.cocoon.acting.Action

Fields

protected static final EMPTY_MAP
 Empty unmodifiable map.

Abstract Class ComposerAction

ComposerAction lets any action that extends this to access SitemapComponents.

Inheritance

extends org.apache.cocoon.acting.AbstractAction
implements org.apache.avalon.framework.component.Composable

Methods

public void compose(ComponentManager manager)
 Set the current ComponentManager instance used by this Composable.

Fields

protected ComponentManager manager The component manager instance

Package org.apache.cocoon.caching

This package contains all the important classes and interfaces for the Cocoon caching
mechanism.

Interface Cacheable

 388

This marker interface declares a (sitemap) component as cacheable.

Methods

public long generateKey()
 Generate the unique key. This key must be unique inside the space of

this component. This method must be invoked before the generateValidity()
method.

Returns
 The generated key or 0 if the component is currently not cacheable.

public CacheValidity generateValidity()
 Generate the validity object. Before this method can be invoked the
 generateKey() method must be invoked.
Returns
 The generated validity object or null if the component is currently
 not cacheable.

Interface CacheValidity

A CacheValidity object contains all the information for one pipeline component to
check if it is still valid. For example, the FileGenerator only stores the timestamp for
the read XML file in this container.

Inheritance

implements java.io.Serializable

Methods

public boolean isValid(CacheValidity validity)
 Check if the component is still valid. This is only true if the incoming
 CacheValidity is of the same type and has the same values.

Class AggregatedCacheValidity

This is a validation object that uses a list to aggregate several CacheValidity objects.
This object is useful if you have more than one piece of information that could possibly
become invalid.

Inheritance

implements org.apache.cocoon.caching.CacheValidity

Constructors

public AggregatedCacheValidity()

 389

Methods

public void add(CacheValidity validity)

public boolean isValid(CacheValidity validity)

public String toString()

Class CompositeCacheValidity

This is a validation object that uses a hash map to aggregate two CacheValidity objects.
It’s similar to AggregatedCacheValidity.

Inheritance

implements org.apache.cocoon.caching.CacheValidity

Constructors

public CompositeCacheValidity(CacheValidity v1, CacheValidity v2)

Methods

public boolean isValid(CacheValidity validity)

CacheValidity getValidity1()

CacheValidity getValidity2()

Class NOPCacheValidity

This is a validation object that is always valid. This might be the most-used
CacheValidity object for serializers.

Inheritance

implements org.apache.cocoon.caching.CacheValidity

Class ParametersCacheValidity

This is a validation object that compares two hash maps if they contain the same keys
with the same values.

Inheritance

 390

implements org.apache.cocoon.caching.CacheValidity

Constructors

public ParametersCacheValidity(HashMap map)

Methods

public boolean isValid(CacheValidity validity)

public java.util.HashMap getParameters()

Class TimeStampCacheValidity

This is a validation object for timestamps. This is the most-used CacheValidity object.

Inheritance

implements org.apache.cocoon.caching.CacheValidity

Constructors

public TimeStampCacheValidity(long timeStamp)

Methods

public boolean isValid(CacheValidity validity)

public long getTimeStamp()

Package org.apache.cocoon.components.parser

This package contains all interfaces and classes having to do with the XML parser.

Interface Parser

This is the XML parser used by all Cocoon components.

Inheritance

implements org.apache.avalon.framework.component.Component
implements org.apache.cocoon.xml.XMLProducer
implements org.apache.cocoon.xml.dom.DOMFactory

Methods

 391

public void setContentHandler(ContentHandler contentHandler)

public void setLexicalHandler(LexicalHandler lexicalHandler)

public void parse(InputSource in)

public org.w3c.dom.Document parseDocument(InputSource in)

Fields

public static final ROLE

Package org.apache.cocoon.components.pipeline

This package contains all classes and interfaces for Cocoon’s processing pipelines, such
as the stream and event pipeline.

Interface EventPipeline

This interface describes the XML processing pipeline consisting of a generator and the
transformers.

Inheritance

implements org.apache.avalon.framework.component.Component
implements org.apache.avalon.framework.component.Composable
implements org.apache.avalon.excalibur.pool.Recyclable

Methods

public boolean process(Environment environment)
 Process the given Environment producing the output

public void setGenerator(String role, String source,
 Parameters param, Exception e)

public void setGenerator(String role, String source, Parameters param)

public org.apache.cocoon.generation.Generator getGenerator()

public void addTransformer(String role, String source, Parameters param)

Fields

public static final ROLE

Interface StreamPipeline

 392

A StreamPipeline either

• Collects a reader and lets it produce a character stream
• Connects an EventPipeline with a serializer and lets them produce the character

stream

Inheritance

implements org.apache.avalon.framework.component.Component
implements org.apache.avalon.framework.component.Composable
implements org.apache.avalon.excalibur.pool.Recyclable

Methods

public boolean process(Environment environment)
 Process the given Environment producing the output

public void setEventPipeline(EventPipeline eventPipeline)
 Set the EventPipeline

public EventPipeline getEventPipeline()
 Get the EventPipeline

public void setReader(String role, String source, Parameters param)
 Set the reader for this pipeline

public void setReader(String role, String source,
 Parameters param, String mimeType)
 Set the reader for this pipeline
public void setSerializer(String role, String source, Parameters param)
 Set the serializer for this pipeline

public void setSerializer(String role, String source,
 Parameters param, String mimeType)
 Set the serializer for this pipeline

Fields

public static final ROLE

Package org.apache.cocoon.components.source

This package holds the interfaces and classes for source resolving.

Interface SourceFactory

This class describes and handles new URI protocols that can be plugged into Cocoon.

Inheritance

 393

extends org.apache.avalon.framework.thread.ThreadSafe

Methods

Source getSource(Environment environment, String location)
 Get a Source object. The environment parameter is optional.

Source getSource(Environment environment, URL base, String location)
 Get a Source object. The environment parameter is optional.

Package org.apache.cocoon.environment

This package describes the interfaces for the Cocoon environment for the request and
response. Everything describing the current process can be found here.

Interface Context

This defines an interface to provide context information.

Methods

public Object getAttribute(String name)

public void setAttribute(String name, Object value)

public void removeAttribute(String name)

public java.util.Enumeration getAttributeNames()
public java.net.URL getResource(String path)

public String getRealPath(String path)

public String getMimeType(String file)

public String getInitParameter(String name)

Interface Cookie

This creates a cookie, a small amount of information that is sent by a servlet to a web
browser, saved by the browser, and later sent back to the server. A cookie’s value can
uniquely identify a client, so cookies are commonly used for session management.

A cookie has a name, a single value, and optional attributes such as a comment, path and
domain qualifiers, a maximum age, and a version number. Some web browsers have bugs
in how they handle the optional attributes, so use them sparingly to improve your
servlets’ interoperability.

 394

The servlet sends cookies to the browser using the response’s addCookie method, which
adds fields to HTTP response headers to send cookies to the browser one at a time. The
browser is expected to support 20 cookies for each web server (300 cookies total). It may
limit cookie size to 4KB each.

The browser returns cookies to the servlet by adding fields to HTTP request headers.
Cookies can be retrieved from a request by using the response’s getCookies method.
Several cookies might have the same name but different path attributes.

Cookies affect the caching of the web pages that use them. HTTP 1.0 does not cache
pages that use cookies created with this class. This class does not support the cache
control defined with HTTP 1.1.

This class supports both the Version 0 (by Netscape) and Version 1 (by RFC 2109)
cookie specifications. By default, cookies are created using Version 0 to ensure the best
interoperability.

Methods

public void setComment(String purpose)
 Specifies a comment that describes a cookie's purpose. The comment is

useful if the browser presents the cookie to the user. Comments are not
supported by Netscape Version 0 cookies.

Parameters
 purpose - a String specifying the comment to display to the user
See Also
 getComment

public String getComment()
 Returns the comment describing the purpose of this cookie, or null if

the cookie has no comment.
Returns
 a String containing the comment, or null if none
See Also
 setComment
public void setDomain(String pattern)
 Specifies the domain within which this cookie should be presented.
 The form of the domain name is specified by RFC 2109. A domain name begins
 with a dot (.foo.com) and means that the cookie is visible to servers
 in a specified Domain Name System (DNS) zone (for example, www.foo.com,
 but not a.b.foo.com). By default, cookies are only returned to the server
 that sent them.
Parameters
 pattern - String containing the domain name within which this cookie

is
 visible; form is according to RFC 2109
See Also
 getDomain

public String getDomain()
 Returns the domain name set for this cookie. The form of the domain name

is

 395

 set by RFC 2109.
Returns
 a String containing the domain name
See Also
 setDomain

public void setMaxAge(int expiry)
 Sets the maximum age of the cookie in seconds.
 A positive value indicates that the cookie will expire after that many
 seconds have passed. Note that the value is the maximum age when the
 cookie will expire, not the cookie's current age.
 A negative value means that the cookie is not stored persistently and

will be deleted when the Web browser exits. A zero value causes the cookie
to be deleted.

Parameters
 expiry - integer specifying the maximum age of the cookie in seconds;

if negative, means the cookie is not stored; if zero, deletes the cookie
See Also
 getMaxAge

public int getMaxAge()
 Returns the maximum age of the cookie, specified in seconds, By default,

-1 indicating the cookie will persist until browser shutdown.
Returns
 an integer specifying the maximum age of the cookie in seconds; if

negative, means the cookie persists until browser shutdown
See Also
 setMaxAge

public void setPath(String uri)
 Specifies a path for the cookie to which the client should return the

cookie. The cookie is visible to all the pages in the directory you specify,
and all the pages in that directory's subdirectories. A cookie's path
must include the servlet that set the cookie, for example, /catalog,
which makes the cookie visible to all directories on the server under
/catalog. Consult RFC 2109 (available on the Internet) for more
information on setting path names for cookies.

Parameters
 uri - String specifying a path
See Also
 getPath

public String getPath()
 Returns the path on the server to which the browser returns this cookie.
 The cookie is visible to all subpaths on the server.
Returns
 a String specifying a path that contains a servlet name, for example,
 "/catalog"
See Also
 setPath

public void setSecure(boolean flag)
 Indicates to the browser whether the cookie should only be sent using

a secure protocol, such as HTTPS or SSL. The default value is false.
Parameters

 396

 Flag if - true, sends the cookie from the browser to the server using
only when using a secure protocol; if false, sent on any protocol

See Also
 getSecure

public boolean getSecure()
 Returns true if the browser is sending cookies only over a secure protocol,

or false if the browser can send cookies using any protocol.
Returns
 true if the browser can use any standard protocol; otherwise, false
See Also
 setSecure

public String getName()
 Returns the name of the cookie. The name cannot be changed after

creation.
Returns
 a String specifying the cookie's name

public void setValue(String newValue)
 Assigns a new value to a cookie after the cookie is created. If you use

a binary value, you may want to use BASE64 encoding.
 With Version 0 cookies, values should not contain white space, brackets,
 parentheses, equals signs, commas, double quotes, slashes, question

marks, at signs, colons, and semicolons. Empty values may not behave
the same way on all browsers.

Parameters
 newValue - String specifying the new value
See Also
 getValue
public String getValue()
 Returns the value of the cookie.
Returns
 a String containing the cookie's present value
See Also
 setValue

public int getVersion()
 Returns the version of the protocol this cookie complies with. Version

1 complies with RFC 2109, and version 0 complies with the original cookie
 specification drafted by Netscape. Cookies provided by a browser use

and identify the browser's cookie version.
Returns
 0 if the cookie complies with the original Netscape specification;
 1 if the cookie complies with RFC 2109
See Also
 setVersion

public void setVersion(int v)
 Sets the version of the cookie protocol this cookie complies with. Version

0 complies with the original Netscape cookie specification. Version 1
complies with RFC 2109. Since RFC 2109 is still somewhat new, consider
version 1 as experimental; do not use it yet on production sites.

Parameters
 v 0 - if the cookie should comply with the original Netscape specification;

1 if the cookie should comply with RFC 2109
See Also

 397

 getVersion

Interface Environment

This is the base interface for an environment abstraction. The environment describes the
current request-response cycle. It abstracts from the environment this cycle is invoked
from—servlet engine, command-line interface, and so on.

Inheritance

implements org.apache.cocoon.environment.SourceResolver

Methods

public org.apache.cocoon.components.source.SourceHandler

getSourceHandler()
 Get the SourceHandler for the current request

public void setSourceHandler(SourceHandler sourceHandler)
 Set the SourceHandler for the current request

public String getURI()
 Get the URI to process. The prefix is stripped off.
public String getURIPrefix()
 Get the prefix of the URI in progress.

public java.net.URL getRootContext()
 Get the Root Context

public java.net.URL getContext()
 Get current context

public String getView()
 Get the view to process

public String getAction()
 Get the action to process

public void setContext(String prefix, String uri)
 Set the context. This is similar to changeContext() except that it is
 absolute.

public void changeContext(String uriprefix, String context)
 Change the context from uriprefix to context

public void redirect(boolean sessionmode,
 String url)
 Redirect to the given URL

public void setContentType(String mimeType)
 Set the content type of the generated resource

public String getContentType()

 398

 Get the content type of the resource

public void setContentLength(int length)
 Set the length of the generated content

public void setStatus(int statusCode)
 Set the response status code

public java.io.OutputStream getOutputStream()
 Get the output stream where to write the generated resource.

public java.util.Map getObjectModel()
 Get the underlying object model

public boolean isResponseModified(long lastModified)
 Check if the response has been modified since the same "resource"
 was requested. The caller has to test if it is really the same "resource"
 which is requested.

public void setResponseIsNotModified()
 Mark the response as not modified.

Interface ModifiableSource

This describes a Source object whose data content can change.

Inheritance

implements org.apache.cocoon.environment.Source

Methods

public void refresh()
 Refresh the content of this object after the underlying data content
 has changed.

Interface Redirector

This is the interface for a redirector abstraction.

Methods

public void redirect(boolean sessionmode, String url)
 Redirect to the given URL

Interface Request

This defines an interface to provide client request information.

Methods

 399

Public Object get(String name)
 Returns the value of the named attribute as an Object, or null if no
 attribute of the given name exists.
Parameters
 name - a String specifying the name of the attribute
Returns
 an Object containing the value of the attribute, or null if the attribute
 does not exist

public Object getAttribute(String name)
 Returns the value of the named attribute as an Object, or null if no
 attribute of the given name exists.
Parameters
 name - a String specifying the name of the attribute
Returns
 an Object containing the value of the attribute, or null if the attribute
 does not exist

public java.util.Enumeration getAttributeNames()
 Returns an Enumeration containing the names of the attributes available
 to this request. This method returns an empty Enumeration if the request
 has no attributes available to it.
Returns
 an Enumeration of strings containing the names of the request's

attributes

public String getAuthType()
 Returns the name of the authentication scheme used to protect the
 servlet, for example, "BASIC" or "SSL," or null if the servlet was not
 protected
Returns
 The name of the authentication scheme used to protect the servlet,
 or null if the servlet was not protected

public String getCharacterEncoding()
 Returns the name of the character encoding used in the body of this

request.
 This method returns null if the request does not specify a character

encoding
Returns
 a String containing the name of the character encoding, or null
 if the request does not specify a character encoding

public int getContentLength()
 Returns the length, in bytes, of the request body
Returns
 an integer containing the length of the request body or -1 if the
 length is not known

public String getContentType()
 Returns the MIME type of the body of the request
Returns
 a String containing the name of the MIME type of the request, or -1 if
 the type is not known

public String getParameter(String name)

 400

 Returns the value of a request parameter as a String
Parameters
 name - a String specifying the name of the parameter
Returns
 a String representing the single value of the parameter
See Also
 getParameterValues

public java.util.Enumeration getParameterNames()
 Returns an Enumeration of String objects containing the names of the
 parameters contained in this request. If the request has no parameters,
 the method returns an empty Enumeration.
Returns
 an Enumeration of String objects, each String containing the name of
 a request parameter; or an empty Enumeration if the request has no

parameters

public String[] getParameterValues(String name)
 Returns an array of String objects containing all of the values the given
 request parameter has, or null if the parameter does not exist.
 If the parameter has a single value, the array has a length of 1.
Parameters
 name - a String containing the name of the parameter whose value is

requested
Returns
 an array of String objects containing the parameter's values
See Also
 getParameter

public String getProtocol()
 Returns the name and version of the protocol the request uses in the

form protocol/majorVersion.minorVersion, for example, HTTP/1.1. For
HTTP servlets, the value returned is the same as the value of the CGI

 variable SERVER_PROTOCOL.
Returns
 a String containing the protocol name and version number

public String getScheme()
 Returns the name of the scheme used to make this request, for example,
 http, https, or ftp. Different schemes have different rules for
 constructing URLs, as noted in RFC 1738.
Returns
 a String containing the name of the scheme used to make this request

public String getServerName()
 Returns the host name of the server that received the request. For
 HTTP servlets, same as the value of the CGI variable SERVER_NAME.
Returns
 a String containing the name of the server to which the request was sent

public int getServerPort()
 Returns the port number on which this request was received. For HTTP
 servlets, same as the value of the CGI variable SERVER_PORT.
Returns
 an integer specifying the port number

public String getRemoteAddr()

 401

 Returns the Internet Protocol (IP) address of the client that sent
 the request. For HTTP servlets, same as the value of the CGI
 variable REMOTE_ADDR.
Returns
 a String containing the IP address of the client that sent the request

public String getRemoteHost()
 Returns the fully qualified name of the client that sent the request,
 or the IP address of the client if the name cannot be determined. For
 HTTP servlets, same as the value of the CGI variable REMOTE_HOST.
Returns
 a String containing the fully qualified name of the client

public void setAttribute(String name, Object o)
 Stores an attribute in this request. Attributes are reset between

requests. Attribute names should follow the same conventions as package
names. Names beginning with java.*, javax.*, and com.sun.*, are reserved

 for use by Sun Microsystems.
Parameters
 name - a String specifying the name of the attribute
 o - the Object to be stored

public void removeAttribute(String name)
 Removes an attribute from this request. This method is not generally
 needed as attributes only persist as long as the request is being handled.
 Attribute names should follow the same conventions as package names.

Names beginning with java.*, javax.*, and com.sun.*, are reserved for
use by Sun Microsystems.

Parameters
 name - a String specifying the name of the attribute to remove

public java.util.Locale getLocale()
 Returns the preferred Locale that the client will accept content in,
 based on the Accept-Language header. If the client request doesn't
 provide an Accept-Language header, this method returns the default
 locale for the server.
Returns
 the preferred Locale for the client

public java.util.Enumeration getLocales()
 Returns an Enumeration of Locale objects indicating, in decreasing
 order starting with the preferred locale, the locales that are acceptable
 to the client based on the Accept-Language header. If the client request
 doesn't provide an Accept-Language header, this method returns an
 Enumeration containing one Locale, the default locale for the server.
Returns
 an Enumeration of preferred Locale objects for the client

public boolean isSecure()
 Returns a boolean indicating whether this request was made using a
 secure channel, such as HTTPS.
Returns
 a boolean indicating if the request was made using a secure channel

public Cookie[] getCookies()
 Returns an array containing all of the Cookie objects the client sent
 with this request. This method returns null if no cookies were sent.

 402

Returns
 an array of all the Cookies included with this request, or null if
 the request has no cookies

public java.util.Map getCookieMap()
 Returns a map of the Cookie objects the client sent with this request,
 indexed by name. This method returns an empty map if no cookies were

sent.
Returns
 a Map of Cookie objects
public long getDateHeader(String name)
 Returns the value of the specified request header as a long value that
 represents a Date object. Use this method with headers that contain dates,
 such as If-Modified-Since. The date is returned as the number of

milliseconds since January 1, 1970 GMT. The header name is case
insensitive. If the request did not have a header of the specified name,
this method returns -1. If the header can't be converted to a date, the
method throws an IllegalArgumentException.

Parameters
 name - a String specifying the name of the header
Returns
 a long value representing the date specified in the header expressed

as the number of milliseconds since January 1, 1970 GMT, or -1 if the
named header was not included with the request

Throws
 IllegalArgumentException - If the header value can't be converted to

a date

Public String getHeader(String name)
 Returns the value of the specified request header as a String. If the
 request did not include a header of the specified name, this method

returns null. The header name is case insensitive. You can use this method
with any request header.

Parameters
 name - a String specifying the header name
Returns
 a String containing the value of the requested header, or null if the
 request does not have a header of that name

public java.util.Enumeration getHeaders(String name)
 Returns all the values of the specified request header as an Enumeration
 of String objects. Some headers, such as Accept-Language can be sent

by clients as several headers each with a different value rather than
sending the header as a comma separated list. If the request did not
include any headers of the specified name, this method returns an empty
Enumeration. The header name is case insensitive. You can use this method
with any request header.

Parameters
 name - a String specifying the header name
Returns
 a Enumeration containing the values of the requested header, or null

if
 the request does not have any headers of that name

public java.util.Enumeration getHeaderNames()
 Returns an enumeration of all the header names this request contains.
 If the request has no headers, this method returns an empty enumeration.

 403

 Some servlet containers do not allow do not allow servlets to access
 headers using this method, in which case this method returns null
Returns
 an enumeration of all the header names sent with this request; if the

request has no headers, an empty enumeration; if the servlet container
does not allow servlets to use this method, null

public String getMethod()
 Returns the name of the HTTP method with which this request was made,
 for example, GET, POST, or PUT. Same as the value of the CGI variable
 REQUEST_METHOD.
Returns
 a String specifying the name of the method with which this request was

made

public String getPathInfo()
 Returns any extra path information associated with the URL the client

sent when it made this request. The extra path information follows the
servlet path but precedes the query string. This method returns null
if there was no extra path information.

 Same as the value of the CGI variable PATH_INFO.
Returns
 a String specifying extra path information that comes after the servlet
 path but before the query string in the request URL; or null if the URL
 does not have any extra path information

public String getPathTranslated()
 Returns any extra path information after the servlet name but before

the query string, and translates it to a real path. Same as the value
of the CGI variable PATH_TRANSLATED. If the URL does not have any extra
path information, this method returns null.

Returns
 a String specifying the real path, or null if the URL does not have any
 extra path information

public String getContextPath()
 Returns the portion of the request URI that indicates the context of

the request. The context path always comes first in a request URI. The
path starts with a "/" character but does not end with a "/" character.
For servlets in the default (root) context, this method returns "".

Returns
 a String specifying the portion of the request URI that indicates the
 context of the request

public String getQueryString()
 Returns the query string that is contained in the request URL after the

path.
 This method returns null if the URL does not have a query string. Same

as the value of the CGI variable QUERY_STRING.
Returns
 a String containing the query string or null if the URL contains no
 query string
public String getRemoteUser()
 Returns the login of the user making this request, if the user has been
 authenticated, or null if the user has not been authenticated. Whether

the

 404

 user name is sent with each subsequent request depends on the browser
and type of authentication. Same as the value of the CGI variable
REMOTE_USER.

Returns
 a String specifying the login of the user making this request, or null

if the user login is not known

public java.security.Principal getUserPrincipal()
 Returns the login of the user making this request, if the user has been
 authenticated, or null if the user has not been authenticated. Whether

the user name is sent with each subsequent request depends on the browser
and type of authentication. Same as the value of the CGI variable
REMOTE_USER.

Returns
 a String specifying the login of the user making this request, or null
 if the user login is not known

public boolean isUserInRole(String role)
 Checks whether the currently logged in user is in a specified role.
Returns
 true if the user is authenticated and in the role; otherwise, false
See Also
 #getRemoteUser

public String getRequestedSessionId()
 Returns the session ID specified by the client. This may not be the same

as the ID of the actual session in use. For example, if the request
specified an old (expired) session ID and the server has started a new
session, this method gets a new session with a new ID. If the request
did not specify a session ID, this method returns null.

Returns
 a String specifying the session ID, or null if the request did not specify
 a session ID
See Also
 isRequestedSessionIdValid

public String getRequestURI()
 Returns the part of this request's URL from the protocol name up to the

query string in the first line of the HTTP request.
For example:
First line of HTTP request Returned Value
POST /some/path.html HTTP/1.1 /some/path.html
GET http://foo.bar/a.html HTTP/1.0 http://foo.bar/a.html
HEAD /xyz?a=b HTTP/1.1 /xyz

Returns
 a String containing the part of the URL from the protocol name up to

the query string

public String getSitemapURI()
 Returns the URI of the requested resource as interpreted by the sitemap.

For example, if your webapp is mounted at "/webapp" and the HTTP request
is for "/webapp/foo", this method returns "foo". Consequently, if the
request is for "/webapp", this method returns an empty string.

 Note that if the request is mapped to a pipeline that contains aggregated
 content, and if this method is called in the context of one of the

aggregated

http://foo.bar/a.html HTTP/1.0
http://foo.bar/a.html

 405

 parts (e.g. a server page), this method will return the URI of the
aggregated

 part, not the original requested URI.
Returns
 a String containing the URL as mangled by the sitemap

public String getServletPath()
 Returns the part of this request's URL that calls the servlet. This

includes either the servlet name or a path to the servlet, but does not
include any extra path information or a query string. Same as the value
of the CGI

 variable SCRIPT_NAME.
Returns
 a String containing the name or path of the servlet being called, as
 specified in the request URL

public Session getSession(boolean create)
 Returns the current Session associated with this request or, if there

is no current session and create is true, returns a new session.
 If create is false and the request has no valid Session, this method
 returns null. To make sure the session is properly maintained, you must

call this method before the response is committed.
Parameters
 true - to create a new session for this request if necessary; false to
 return null if there's no current session
Returns
 the Session associated with this request or null if create is false and

the
 request has no valid session
See Also
 getSession()

public Session getSession()
 Returns the current session associated with this request, or if the

request
 does not have a session, creates one.
Returns
 the Session associated with this request
See Also
 getSession(boolean)

public boolean isRequestedSessionIdValid()
 Checks whether the requested session ID is still valid.
Returns
 true if this request has an id for a valid session in the current session
 context; false otherwise
See Also
 getRequestedSessionId
 getSession
public boolean isRequestedSessionIdFromCookie()
 Checks whether the requested session ID came in as a cookie.
Returns
 true if the session ID came in as a cookie; otherwise, false
See Also
 getSession

public boolean isRequestedSessionIdFromURL()

 406

 Checks whether the requested session ID came in as part of the request
URL.

Returns
 true if the session ID came in as part of a URL; otherwise, false
See Also
 getSession

Interface Response

This defines an interface to provide client response information.

Methods

public String getCharacterEncoding()
 Returns the name of the charset used for the MIME body sent in this

response.
 If no charset has been assigned, it is implicitly set to ISO-8859-1
 (Latin-1). See RFC 2047 (http://ds.internic.net/rfc/rfc2045.txt) for
 more information about character encoding and MIME.
Returns
 a String specifying the name of the charset, for example, ISO-8859-1

public void setLocale(Locale loc)
 Sets the locale of the response, setting the headers (including the
 Content-Type's charset) as appropriate. By default, the response locale

is
 the default locale for the server.
Parameters
 loc - the locale of the response
See Also
 getLocale

public java.util.Locale getLocale()
 Returns the locale assigned to the response.
See Also
 setLocale

public Cookie createCookie(String name, String value)
 Constructs a cookie with a specified name and value.
 The name must conform to RFC 2109. That means it can contain only ASCII
 alphanumeric characters and cannot contain commas, semicolons, or white
 space or begin with a $ character. The cookie's name cannot be changed
 after creation.
 The value can be anything the server chooses to send. Its value is probably
 of interest only to the server. The cookie's value can be changed after
 creation with the setValue method.
 By default, cookies are created according to the Netscape cookie
 specification. The version can be changed with the setVersion method.
Parameters
 name - a String specifying the name of the cookie
 value - a String specifying the value of the cookie
Throws
 IllegalArgumentException - if the cookie name contains illegal

characters
 (for example, a comma, space, or semicolon) or it is one of the tokens

 407

 reserved for use by the cookie protocol

public void addCookie(Cookie cookie)
 Adds the specified cookie to the response. This method can be called

multiple
 times to set more than one cookie.
Parameters
 cookie - the Cookie to return to the client

public boolean containsHeader(String name)
 Returns a boolean indicating whether the named response header has
 already been set.
Parameters
 name - the header name
Returns
 true if the named response header has already been set; false otherwise

public String encodeURL(String url)
 Encodes the specified URL by including the session ID in it, or, if

encoding
 is not needed, returns the URL unchanged. The implementation of this

method
 includes the logic to determine whether the session ID needs to be encoded
 in the URL. For example, if the browser supports cookies, or session
 tracking is turned off, URL encoding is unnecessary.
 For robust session tracking, all URLs emitted by a servlet should be

run
 through this method. Otherwise, URL rewriting cannot be used with

browsers
 which do not support cookies.
Parameters
 url - the url to be encoded.
Returns
 the encoded URL if encoding is needed; the unchanged URL otherwise.

public void setDateHeader(String name, long date)
 Sets a response header with the given name and date-value. The date is
 specified in terms of milliseconds since the epoch. If the header had

already
 been set, the new value overwrites the previous one. The containsHeader
method
 can be used to test for the presence of a header before setting its value.
Parameters
 name - the name of the header to set
 value - the assigned date value
See Also
 containsHeader
 addDateHeader
public void addDateHeader(String name, long date)
 Adds a response header with the given name and date-value. The date is
 specified in terms of milliseconds since the epoch. This method allows
 response headers to have multiple values.
Parameters
 name - the name of the header to set
 value - the additional date value
See Also
 setDateHeader

 408

public void setHeader(String name, String value)
 Sets a response header with the given name and value. If the header had
 already been set, the new value overwrites the previous one. The
 containsHeader method can be used to test for the presence of a header
 before setting its value.
Parameters
 name - the name of the header
 value - the header value
See Also
 containsHeader
 addHeader

public void addHeader(String name, String value)
 Adds a response header with the given name and value. This method allows
 response headers to have multiple values.
Parameters
 name - the name of the header
 value - the additional header value
See Also
 setHeader

Interface Session

Provides a way to identify a user across more than one page request or to visit to a web
site and store information about that user.

Cocoon uses this interface to create a session between a client and Cocoon. The session
persists for a specified time period, across more than one connection or page request from
the user. A session usually corresponds to one user, who might visit a site many times.
The server can maintain a session in many ways, such as using cookies or rewriting
URLs.

This interface allows Cocoon to

• View and manipulate information about a session, such as the session identifier,
creation time, and last accessed time

• Bind objects to sessions, allowing user information to persist across multiple user
connections

Session information is scoped only to the current context (Context), so information
stored in one context is not directly visible in another.

Methods

public long getCreationTime()
 Returns the time when this session was created, measured in milliseconds
 since midnight January 1, 1970 GMT.
Returns
 a long specifying when this session was created, expressed in

milliseconds

 409

 since 1/1/1970 GMT
Throws
 IllegalStateException - if this method is called on an invalidated

session

public String getId()
 Returns a string containing the unique identifier assigned to this

session.
 The identifier is assigned by the context container and is implementation
 dependent.
Returns
 a string specifying the identifier assigned to this session

public long getLastAccessedTime()
 Returns the last time the client sent a request associated with this

session,
 as the number of milliseconds since midnight January 1, 1970 GMT.
 Actions that your application takes, such as getting or setting a value
 associated with the session, do not affect the access time.
Returns
 a long representing the last time the client sent a request associated
 with this session, expressed in milliseconds since 1/1/1970 GMT

public void setMaxInactiveInterval(int interval)
 Specifies the time, in seconds, between client requests before the
 contextcontainer will invalidate this session. A negative time indicates
 the session should never timeout.
Parameters
 interval - An integer specifying the number of seconds

public int getMaxInactiveInterval()
 Returns the maximum time interval, in seconds, that the context container
 will keep this session open between client accesses. After this interval,
 the context container will invalidate the session. The maximum time

interval
 can be set with the setMaxInactiveInterval method. A negative time

indicates
 the session should never timeout.
Returns
 an integer specifying the number of seconds this session remains open
 between client requests
See Also
 setMaxInactiveInterval

public Object getAttribute(String name)
 Returns the object bound with the specified name in this session, or

null
 if no object is bound under the name.
Parameters
 name - a string specifying the name of the object
Returns
 the object with the specified name
Throws
 IllegalStateException - if this method is called on an invalidated

session

public java.util.Enumeration getAttributeNames()

 410

 Returns an Enumeration of String objects containing the names of all
the

 objects bound to this session.
Returns
 an Enumeration of String objects specifying the names of all the objects
 bound to this session
Throws
 IllegalStateException - if this method is called on an invalidated

session

public void setAttribute(String name, Object value)
 Binds an object to this session, using the name specified. If an object

of
 the same name is already bound to the session, the object is replaced.
Parameters
 name - the name to which the object is bound; cannot be null
 value - the object to be bound; cannot be null
Throws
 IllegalStateException - if this method is called on an invalidated

session

public void removeAttribute(String name)
 Removes the object bound with the specified name from this session. If

the
 session does not have an object bound with the specified name, this method
 does nothing.
Parameters
 name - the name of the object to remove from this session
Throws
 IllegalStateException - if this method is called on an invalidated

session

public void invalidate()
 Invalidates this session to it.
Throws
 IllegalStateException - if this method is called on an already

invalidated
 session

public boolean isNew()
 Returns true if the client does not yet know about the session or if

the
 client chooses not to join the session. For example, if the server used
 only cookie-based sessions, and the client had disabled the use of

cookies,
 then a session would be new on each request.
Returns
 true if the server has created a session, but the client has not yet

joined
Throws
 IllegalStateException - if this method is called on an already
 invalidated session

Interface SourceResolver

 411

This is a base interface for resolving a source by system identifiers. A system identifier
can be any URI supported by Cocoon.

Methods

Public Source resolve(String systemID)
 Resolve the source.
Parameters
 systemID - This is either a system identifier (java.net.URL or a local

file.

Interface Source

This describes a source. This interface provides a simple interface for accessing a source
of data. The source of data is assumed to not change during the lifetime of the Source
object. If you have a data source that can change its content, and you want this to be
reflected in Cocoon, use a @link ModifiableSource object instead.

Inheritance

implements org.apache.avalon.excalibur.pool.Recyclable
implements org.apache.cocoon.xml.XMLizable

Methods

public long getLastModified()
 Get the last modification date of the source or 0 if it is not possible
 to determine the date.

public long getContentLength()
 Get the content length of the source or -1 if it is not possible to
 determine the length.

public java.io.InputStream getInputStream()
 Return an InputStream object to read from the source.

public org.xml.sax.InputSource getInputSource()
 Return an InputSource object to read the XML content.
Returns
 an InputSource value
Throws
 ProcessingException - if an error occurs
 IOException - if an error occurs

public String getSystemId()
 Return the unique identifier for this source

Class ObjectModelHelper

This is a set of constants and methods used to access the content of the object model.

 412

The object model is a map used to pass information about the calling environment to the
sitemap and its components (matchers, actions, transformers, and so on).

This class provides accessors for only the objects in the object model that are common to
every environment and thus can be used safely. Some environments provide additional
objects, but they are not described here. You should access them with care because doing
so ties the application to that particular environment.

Methods

public static final Request getRequest(Map objectModel)

public static final Response getResponse(Map objectModel)

public static final Context getContext(Map objectModel)

Fields

public static final REQUEST_OBJECT
 Key for the environment Request in the object model.

public static final RESPONSE_OBJECT
 Key for the environment Response in the object model.

public static final CONTEXT_OBJECT
 Key for the environment Context in the object model.

Package org.apache.cocoon.generation

This is the Cocoon generator and all classes implementing this interface.

Interface Generator

This interface describes the generator for an XML processing pipeline in the sitemap.

Inheritance

implements org.apache.cocoon.xml.XMLProducer
implements org.apache.cocoon.sitemap.SitemapModelComponent

Methods

public void generate()

Fields

 413

public static final ROLE

Abstract Class AbstractGenerator

This is an abstract class implementing the Generator interface. This class can be used as
a base to implement additional custom generators.

Interfaces

extends org.apache.cocoon.xml.AbstractXMLProducer
implements org.apache.cocoon.generation.Generator

Methods

public void setup(SourceResolver resolver,
 Map objectModel,
 String src,
 Parameters par)
 Set the SourceResolver, object model Map, the source and sitemap

Parameters
 used to process the request.

public void recycle()
 Recycle the generator by removing references

Fields

protected resolver
 The current SourceResolver.

protected objectModel
 The current Map objectModel.

protected parameters
 The current Parameters.

protected source
 The source URI associated with the request or null.

Abstract Class ComposerGenerator

This is an abstract class implementing the Generator interface. This class can be used as
a base to implement additional custom generators.

Inheritance

extends org.apache.cocoon.generation.AbstractGenerator
implements org.apache.avalon.framework.component.Composable

 414

Methods

public void compose(ComponentManager manager)
 Set the current ComponentManager instance used by this Composable.

Fields

protected manager
 The component manager instance

Package org.apache.cocoon.matching

This package contains all the interfaces and classes for the sitemap’s matcher component
type.

Interface Matcher

This interface describes a matcher component used in the sitemap.

Inheritance

implements org.apache.avalon.framework.component.Component

Methods

public java.util.Map match(String pattern,
 Map objectModel,
 Parameters parameters)
 Matches the pattern against some Request values and returns a Map object

with
 replacements for wildcards contained in the pattern.
Parameters
 pattern - The pattern to match against. Depending on the implementation

the
 pattern can contain wildcards or regular expressions.
 objectModel - The Map with object of the calling environment which can
 be used to select values this matchers matches against.
Returns
 Map The returned Map object with replacements for wildcards/regular
 expressions contained in the pattern. If the return value is null there
 was no match.

Fields

public static final ROLE

Interface PreparableMatcher

 415

This is a matcher that can prepare patterns during sitemap setup for a faster match at
request time. This is also a regular matcher, meaning that the sitemap can decide either to
prepare the pattern or to match with a request-time-evaluated pattern (for value
substitution).

Inheritance

implements org.apache.cocoon.matching.Matcher

Methods

public Object preparePattern(String pattern)
 Prepares a pattern in a form that allows faster match. For example, a

regular
 expression matcher can precompile the expression and return the

corresponding
 object. This method is called once for each pattern used with a particular
 matcher class. The returned value is then passed back as the
 preparedPattern parameter of preparedMatch(Object, Map, Parameters).
 Parameters
 pattern - The pattern to prepare. Depending on the implementation the

pattern
 can contain wildcards or regular expressions.
Returns
 an optimized representation of the pattern.
Throws
 a - PatternException if the pattern couldn't be prepared.

public java.util.Map preparedMatch(Object preparedPattern,
 Map objectModel,
 Parameters parameters)
 Matches the prepared pattern against some values in the object model
 (most often the Request) and returns a Map object with replacements for
 wildcards contained in the pattern.
Parameters
 preparedPattern - The preparedPattern to match against, as returned by
 preparePattern(String).
 objectModel - The Map with objects of the calling environment which can

be
 used to select values this matchers matches against.
Returns
 a Map object with replacements for wildcards/regular-expressions

contained
 in the pattern. If the return value is null there was no match.

Package org.apache.cocoon.reading

This contains all classes and interfaces for the reader sitemap component.

Interface Reader

 416

This interface describes the reader component used in the sitemap.

Inheritance

implements org.apache.cocoon.sitemap.SitemapModelComponent,
org.apache.cocoon.sitemap.SitemapOutputComponent

Methods

public void generate()
 Generate the response.
public long getLastModified()
Returns
 the time the read source was last modified or 0 if it is not possible

to
 detect

Fields

public static final ROLE

Abstract Class AbstractReader

This is an abstract class implementing the Reader interface. This class can be used as a
base to implement additional custom readers.

Inheritance

extends org.apache.avalon.framework.logger.AbstractLoggable
implements org.apache.cocoon.reading.Reader,
implements org.apache.avalon.excalibur.pool.Recyclable

Methods

public void setup(SourceResolver resolver,
 Map objectModel,
 String src,
 Parameters par)
 Set the SourceResolver the object model Map, the source and sitemap
 Parameters used to process the request.

public void setOutputStream(OutputStream out)
 Set the OutputStream

public String getMimeType()
 Get the mime-type of the output of this Serializer This default
 implementation returns null to indicate that the mime-type specified

in the

 417

 sitemap is to be used

public long getLastModified()
Returns
 the time the read source was last modified or 0 if it is not possible

to
 detect

public void recycle()
 Recycle the component

public boolean shouldSetContentLength()
 Test if the component wants to set the content length

Fields

protected resolver
 The current SourceResolver

protected objectModel
 The current Map of the object model.

protected parameters
 The current Parameters

protected source
 The source URI associated with the request or null

protected out
 The OutputStream to write on.

Package org.apache.cocoon.selection

This package contains the interfaces and classes used for the selector sitemap
component.

Interface Selector

This interface describes a selector used in the sitemap.

Inheritance

implements org.apache.avalon.framework.component.Component

Methods

public boolean select(String expression,
 Map objectModel,
 Parameters parameters)
 Selectors test pattern against some objects in a Map model and signals

 418

 success with the returned boolean value
Parameters
 expression - The expression to test.
 objectModel - The Map containing object of the calling environment which

may
 be used to select values to test the expression.
 parameters - The sitemap parameters, as specified by <parameter> tags.
Returns
 boolean Signals successful test.

Fields

public static final ROLE

Package org.apache.cocoon.serialization

This package contains all the classes and interfaces for the serializer sitemap
component.

Interface Serializer

This interface describes a serializer component.

Inheritance

implements org.apache.cocoon.xml.XMLConsumer,
implements org.apache.cocoon.sitemap.SitemapOutputComponent

Fields

public static final ROLE

Abstract Class AbstractSerializer

This is an abstract class implementing the Serializer interface. This class can be used
as a base to implement additional custom serializers.

Inheritance

extends org.apache.cocoon.xml.AbstractXMLPipe
implements org.apache.cocoon.serialization.Serializer,
implements org.apache.avalon.excalibur.pool.Recyclable

Methods

public void setOutputStream(OutputStream out)

 419

 Set the OutputStream where the XML should be serialized.

public String getMimeType()
 Get the mime-type of the output of this Serializer This default
 implementation returns null to indicate that the mime-type specified

in the
 sitemap is to be used

public void recycle()
 Recycle serializer by removing references

public boolean shouldSetContentLength()
 Test if the component wants to set the content length

Fields

protected output
 The OutputStream used by this serializer.

Abstract Class AbstractTextSerializer

This is an abstract class implementing the Serializer interface. This class can be used
as a base to implement additional custom serializers that produce any text output, such as
HTML or XML.

Inheritance

extends org.apache.cocoon.serialization.AbstractSerializer
implements org.apache.avalon.framework.configuration.Configurable
implements org.apache.cocoon.caching.Cacheable
implements org.apache.avalon.excalibur.pool.Poolable

Methods

protected javax.xml.transform.sax.SAXTransformerFactory

getTransformerFactory()
 Helper for TransformerFactory.

public void setOutputStream(OutputStream out)
 Set the OutputStream where the XML should be serialized.

public void configure(Configuration conf)
 Set the configurations for this serializer.

public long generateKey()
 Generate the unique key. This key must be unique inside the space of

this
 component. This method must be invoked before the generateValidity()

method.
Returns
 The generated key or 0 if the component is currently not cacheable.

 420

public org.apache.cocoon.caching.CacheValidity generateValidity()
 Generate the validity object. Before this method can be invoked the
 generateKey() method must be invoked.
Returns
 The generated validity object or null if the component is currently
 not cacheable.

public void recycle()
 Recycle serializer by removing references

public void startDocument()

public void startPrefixMapping(String prefix, String uri)
 Add tracking of mappings to be able to add xmlns: attributes in
 startElement().

public void endPrefixMapping(String prefix)
 End the scope of a prefix-URI mapping: remove entry from mapping tables.
public void startElement(String eltUri, String eltLocalName,
 String eltQName, Attributes attrs)
 Ensure all namespace declarations are present as xmlns: attributes and

add
 those needed before calling superclass. This is a workaround for a Xalan
 bug (at least in version 2.0.1) :

org.apache.xalan.serialize.SerializerToXML
 ignores start/endPrefixMapping().

public void endElement(String eltUri, String eltLocalName, String eltQName)
 Receive notification of the end of an element. Try to restore the element
qName.

Fields

protected format
 The Properties used by this serializer.

Package org.apache.cocoon.sitemap

This package contains some of Cocoon’s main core classes. They are responsible for
managing and processing the sitemaps and their components.

Interface SitemapModelComponent

This interface is implemented by all sitemap components, such as generators, readers,
and transformers.

Inheritance

implements org.apache.avalon.framework.component.Component

 421

Methods

public void setup(SourceResolver resolver,
 Map objectModel,
 String src,
 Parameters par)
 Set the SourceResolver, objectModel Map, the source and sitemap

Parameters
 used to process the request.

Interface SitemapOutputComponent

This interface is implemented by all sitemap components producing output: a serializer
and a reader.

Inheritance

implements org.apache.avalon.framework.component.Component

Methods

public void setOutputStream(OutputStream out)
 Set the OutputStream where the requested resource should be serialized.

public String getMimeType()
 Get the mime-type of the output of this Component

public boolean shouldSetContentLength()
 Test if the component wants to set the content length

Class Handler

This class handles the managing and stating of one sitemap.

Inheritance

extends org.apache.avalon.framework.logger.AbstractLoggable
implements java.lang.Runnable
implements org.apache.avalon.framework.context.Contextualizable
implements org.apache.avalon.framework.component.Composable
implements org.apache.cocoon.Processor
implements org.apache.avalon.framework.activity.Disposable
implements org.apache.cocoon.environment.SourceResolver

Constructors

protected Handler(String sourceFileName, boolean check_reload)

 422

Methods

public void contextualize(Context context)
 Contextualizable

public void compose(ComponentManager manager)
 Composable

protected boolean available()

protected boolean hasChanged()

protected boolean isRegenerating()

protected void regenerateAsynchronously(Environment environment)

protected void regenerate(Environment environment)

public boolean process(Environment environment)

public boolean process(Environment environment,
 StreamPipeline pipeline,
 EventPipeline eventPipeline)
public void setBasePath(String basePath)

public void run()
 Generate the Sitemap class

public void throwEventualException()

public Exception getException()

public void dispose()
 dispose

public org.apache.cocoon.environment.Source resolve(String systemId)
 Resolve an entity. Interface SourceResolver

Class Manager

This class manages all a sitemap’s subsitemaps. This instance invokes subsitemaps and
checks for regeneration of the subsitemap.

Inheritance

extends org.apache.avalon.framework.logger.AbstractLoggable
implements org.apache.avalon.framework.component.Component
implements org.apache.avalon.framework.configuration.Configurable
implements org.apache.avalon.framework.component.Composable
implements org.apache.avalon.framework.context.Contextualizable
implements org.apache.avalon.framework.thread.ThreadSafe
implements org.apache.avalon.excalibur.logger.LogKitManageable

 423

Methods

public void setRoleManager(RoleManager roles)
 Set the role manager

public void setLogKitManager(LogKitManager logkit)
 Set the logkit manager

public void configure(Configuration conf)
 get a configuration
Parameters
 conf - the configuration

public void contextualize(Context context)
 get a context
Parameters
 context - the context object

public void compose(ComponentManager manager)
 get a component manager
Parameters
 manager - the component manager

public boolean invoke(ComponentManager newManager,
 Environment environment,
 String uri_prefix,
 String source,
 boolean check_reload,
 boolean reload_asynchron)
 invokes the sitemap handler to process a request
Parameters
 environment - the environment
 uri_prefix - the prefix to the URI
 source - the source of the sitemap
 check_reload - should the sitemap be automagically reloaded
 reload_asynchron - should the sitemap be reloaded asynchron
Returns
 states if the requested resource was produced
Throws
 Exception - there may be several exceptions thrown

public boolean invoke(ComponentManager newManager,
 Environment environment,
 String uri_prefix,
 String source,
 boolean check_reload,
 boolean reload_asynchron,
 StreamPipeline pipeline,
 EventPipeline eventPipeline)
 invokes the sitemap handler to process a request
Parameters
 environment - the environment
 uri_prefix - the prefix to the URI
 source - the source of the sitemap
 check_reload - should the sitemap be automagically reloaded

 424

 reload_asynchron - should the sitemap be reloaded asynchron
Returns
 states if the requested resource was produced
Throws
 Exception - there may be several exceptions thrown

public boolean hasChanged()
 has the sitemap changed
Returns
 whether the sitemap file has changed

Package org.apache.cocoon.transformation

This package contains all interfaces and classes for the transformer sitemap component.

Interface Transformer

This interface describes the transformer sitemap component.

Inheritance

implements org.apache.cocoon.xml.XMLPipe
implements org.apache.cocoon.sitemap.SitemapModelComponent

Fields

public static final ROLE

Abstract Class AbstractTransformer

This abstract class should be used as a base for additional custom transformers.

Inheritance

extends org.apache.cocoon.xml.AbstractXMLPipe
implements org.apache.cocoon.transformation.Transformer

Package org.apache.cocoon.util

This package contains miscellaneous utility classes for various concerns, such as hashing
and file I/O.

Class HashUtil

This is a very efficient Java hash algorithm. It is based on the BuzHash algorithm by
Robert Uzgalis (see http://www.serve.net/buz/hash.adt/java.000.html for more

http://www.serve.net/buz/hash.adt/java.000.html

 425

information). BuzHash is copyright 1996 Robert Uzgalis. All rights reserved. Used with
kind permission of the author.

Methods

public static long hash(String arg)
 Hash a String.
Parameters
 arg - The String to be hashed
Returns
 The hash for the input.

public static long hash(StringBuffer arg)
 Hash a String.
Parameters
 arg - The String represented by the StringBuffer to be hashed
Returns
 The hash for the input.

Package org.apache.cocoon.xml

This package contains some common interfaces describing the actors of the XML
processing pipeline, such as XMLConsumer and XMLProducer.

Interface XMLConsumer

This interface identifies classes that consume XML data, receiving notification of SAX
events. This interface unites the idea of SAX ContentHandler and LexicalHandler.

Inheritance

implements org.xml.sax.ContentHandler
implements org.xml.sax.ext.LexicalHandler

Interface XMLizable

This interface can be implemented by classes that are willing to provide an XML
representation of their current state as SAX events.

Methods

public void toSAX(ContentHandler handler)
 Generates SAX events representing the object's state. NOTE : if the
 implementation can produce lexical events, care should be taken that

handler
 can actually be a XMLConsumer that accepts such events.

Interface XMLPipe

 426

This interface combines an XML producer and a consumer to create a SAX pipe.

Inheritance

implements org.apache.cocoon.xml.XMLConsumer
implements org.apache.cocoon.xml.XMLProducer

Interface XMLProducer

This interface identifies classes that produce XML data, sending SAX events to the
configured XMLConsumer. It’s beyond the scope of this interface to specify how the XML
data production should be started.

Methods

public void setConsumer(XMLConsumer consumer)
Set the XMLConsumer that will receive XML data.

Abstract Class AbstractXMLConsumer

This abstract class provides a default implementation of the methods specified by the
XMLConsumer interface.

Inheritance

extends org.apache.avalon.framework.logger.AbstractLoggable
implements org.apache.cocoon.xml.XMLConsumer

Methods

public void setDocumentLocator(Locator locator)
 Receive an object for locating the origin of SAX document events.
Parameters
 locator - An object that can return the location of any SAX document

event.

public void startDocument()
 Receive notification of the beginning of a document.

public void endDocument()
 Receive notification of the end of a document.

public void startPrefixMapping(String prefix, String uri)
 Begin the scope of a prefix-URI Namespace mapping.
Parameters
 prefix - The Namespace prefix being declared.
 uri - The Namespace URI the prefix is mapped to.

 427

public void endPrefixMapping(String prefix)
 End the scope of a prefix-URI mapping.
Parameters
 prefix - The prefix that was being mapping.

public void startElement(String uri, String loc, String raw, Attributes a)
 Receive notification of the beginning of an element.
Parameters
 uri - The Namespace URI, or the empty string if the element has no

Namespace
 URI or if Namespace processing is not being performed.
 loc - The local name (without prefix), or the empty string if Namespace
 processing is not being performed.
 raw - The raw XML 1.0 name (with prefix), or the empty string if raw

names
 are not available.
 a - The attributes attached to the element. If there are no attributes,
 it shall be an empty Attributes object.

public void endElement(String uri, String loc, String raw)
 Receive notification of the end of an element.
Parameters
 uri - The Namespace URI, or the empty string if the element has no

Namespace
 URI or if Namespace processing is not being performed.
 loc - The local name (without prefix), or the empty string if Namespace
 processing is not being performed.
 raw - The raw XML 1.0 name (with prefix), or the empty string if raw

names
 are not available.
public void characters(char[] ch, int start, int len)
 Receive notification of character data.
Parameters
 ch - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.

public void ignorableWhitespace(char[] ch, int start, int len)
 Receive notification of ignorable whitespace in element content.
Parameters
 ch - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.

public void processingInstruction(String target, String data)
 Receive notification of a processing instruction.
Parameters
 target - The processing instruction target.
 data - The processing instruction data, or null if none was supplied.

public void skippedEntity(String name)
 Receive notification of a skipped entity.
Parameters
 name - The name of the skipped entity. If it is a parameter entity,
 the name will begin with '%'.

public void startDTD(String name, String publicId, String systemId)

 428

 Report the start of DTD declarations, if any.
Parameters
 name - The document type name.
 publicId - The declared public identifier for the external DTD subset,
 or null if none was declared.
 systemId - The declared system identifier for the external DTD subset,
 or null if none was declared.

public void endDTD()
 Report the end of DTD declarations.

public void startEntity(String name)
 Report the beginning of an entity.
Parameters
 name - The name of the entity. If it is a parameter entity, the name

will
 begin with '%'.

public void endEntity(String name)
 Report the end of an entity.
Parameters
 name - The name of the entity that is ending.

public void startCDATA()
 Report the start of a CDATA section.
public void endCDATA()
 Report the end of a CDATA section.

public void comment(char[] ch, int start, int len)
 Report an XML comment anywhere in the document.
Parameters
 ch - An array holding the characters in the comment.
 start - The starting position in the array.
 len - The number of characters to use from the array.

Abstract Class AbstractXMLPipe

This class provides a bridge class to connect to existing content handlers and lexical
handlers.

Inheritance

extends org.apache.cocoon.xml.AbstractXMLProducer
implements org.apache.cocoon.xml.XMLPipe
implements org.apache.avalon.excalibur.pool.Recyclable

Methods

public void setDocumentLocator(Locator locator)
 Receive an object for locating the origin of SAX document events.
Parameters
 locator - An object that can return the location of any SAX document

event.

 429

public void startDocument()
 Receive notification of the beginning of a document.

public void endDocument()
 Receive notification of the end of a document.

public void startPrefixMapping(String prefix, String uri)
 Begin the scope of a prefix-URI Namespace mapping.
Parameters
 prefix - The Namespace prefix being declared.
 uri - The Namespace URI the prefix is mapped to.

public void endPrefixMapping(String prefix)
 End the scope of a prefix-URI mapping.
Parameters
 prefix - The prefix that was being mapping.

public void startElement(String uri, String loc,
 String raw, Attributes a)
 Receive notification of the beginning of an element.
Parameters
 uri - The Namespace URI, or the empty string if the element has no

Namespace
 URI or if Namespace processing is not being performed.
 loc - The local name (without prefix), or the empty string if Namespace
 processing is not being performed.
 raw - The raw XML 1.0 name (with prefix), or the empty string if raw

names
 are not available.
 a - The attributes attached to the element. If there are no attributes,
 it shall be an empty Attributes object.

public void endElement(String uri, String loc, String raw)
 Receive notification of the end of an element.
Parameters
 uri - The Namespace URI, or the empty string if the element has no

Namespace
 URI or if Namespace processing is not being performed.
 loc - The local name (without prefix), or the empty string if Namespace
 processing is not being performed.
 raw - The raw XML 1.0 name (with prefix), or the empty string if raw

names
 are not available.

public void characters(char[] c, int start, int len)
 Receive notification of character data.
Parameters
 c - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.

public void ignorableWhitespace(char[] c, int start, int len)
 Receive notification of ignorable whitespace in element content.
Parameters
 c - The characters from the XML document.
 start - The start position in the array.

 430

 len - The number of characters to read from the array.

public void processingInstruction(String target, String data)
 Receive notification of a processing instruction.
Parameters
 target - The processing instruction target.
 data - The processing instruction data, or null if none was supplied.

public void skippedEntity(String name)
 Receive notification of a skipped entity.
Parameters
 name - The name of the skipped entity. If it is a parameter entity,
 the name will begin with '%'.

public void startDTD(String name, String publicId, String systemId)
 Report the start of DTD declarations, if any.
Parameters
 name - The document type name.
 publicId - The declared public identifier for the external DTD subset,
 or null if none was declared.
 systemId - The declared system identifier for the external DTD subset,
 or null if none was declared.
public void endDTD()
 Report the end of DTD declarations.

public void startEntity(String name)
 Report the beginning of an entity.
Parameters
 name - The name of the entity. If it is a parameter entity, the name

will
 begin with '%'.

public void endEntity(String name)
 Report the end of an entity.
Parameters
 name - The name of the entity that is ending.

public void startCDATA()
 Report the start of a CDATA section.

public void endCDATA()
 Report the end of a CDATA section.

public void comment(char[] ch, int start, int len)
 Report an XML comment anywhere in the document.
Parameters
 ch - An array holding the characters in the comment.
 start - The starting position in the array.
 len - The number of characters to use from the array.

Abstract Class AbstractXMLProducer

This abstract class provides a default implementation of the methods specified by the
XMLProducer interface.

 431

Inheritance

extends org.apache.avalon.framework.logger.AbstractLoggable
implements org.apache.cocoon.xml.XMLProducer

Methods

public void setConsumer(XMLConsumer consumer)
 Set the XMLConsumer that will receive XML data.
 This method will simply call setContentHandler(consumer) and
 setLexicalHandler(consumer).

public void setContentHandler(ContentHandler handler)
 Set the ContentHandler that will receive XML data.
 Subclasses may retrieve this ContentHandler instance accessing the

protected
 super.contentHandler field.

public void setLexicalHandler(LexicalHandler handler)
 Set the LexicalHandler that will receive XML data.
 Subclasses may retrieve this LexicalHandler instance accessing the

protected
 super.lexicalHandler field.
Throws
 IllegalStateException - If the LexicalHandler or the XMLConsumer were
 already set.

public void recycle()
 Recycle the producer by removing references

Fields

protected xmlConsumer
 The XMLConsumer receiving SAX events.

protected contentHandler
 The ContentHandler receiving SAX events.

protected lexicalHandler
 The LexicalHandler receiving SAX events.

Package org.apache.cocoon.xml.dom

This package contains helper classes for dealing with DOM trees.

Interface DOMBuilder.Listener

The Listener interface must be implemented by objects that are willing to be notified of
a successful DOM tree generation.

 432

Methods

public void notify(Document doc)
 Receive notification of a successfully completed DOM tree generation.

Interface DOMFactory

This interface identifies classes producing instances of DOM Document objects.

Methods

public org.w3c.dom.Document newDocument()
 Create a new Document object.

public org.w3c.dom.Document newDocument(String name)
 Create a new Document object with a specified DOCTYPE.

public org.w3c.dom.Document newDocument(String name,
 String publicId,
 String systemId)
 Create a new Document object with a specified DOCTYPE, public ID and

system ID.

Class DOMBuilder

DOMBuilder is a utility class that generates a W3C DOM document from SAX events.

Inheritance

implements org.apache.cocoon.xml.XMLConsumer
implements org.apache.avalon.framework.logger.Loggable

Constructors

protected DOMBuilder()
 Construct a new instance of this TreeGenerator.

public DOMBuilder(DOMFactory factory)
 Construct a new instance of this TreeGenerator.

public DOMBuilder(DOMFactory factory, DOMBuilder.Listener listener)
 Construct a new instance of this TreeGenerator.

public DOMBuilder(Node parentNode)
 Constructs a new instance that appends nodes to the given parent node.
 Note : you cannot use a Listener when appending to a Node, because the
 notification occurs at endDocument() which does not happen here.

Methods

 433

public void setLogger(Logger logger)

public org.w3c.dom.Document getDocument()
 Return the newly built Document.

public void setDocumentLocator(Locator loc)
 Set the SAX Document Locator.
Parameters
 loc - The SAX Locator.

public void startDocument()
 Receive notification of the beginning of a document.
Throws
 SAXException - If this method was not called appropriately.

public void endDocument()
 Receive notification of the beginning of a document.
Throws
 SAXException - If this method was not called appropriately.

public void startDTD(String name, String publicId, String systemId)
 Report the start of DTD declarations, if any.
Parameters
 name - The document type name.
 publicId - The declared public identifier for the external DTD subset,
 or null if none was declared.
 systemId - The declared system identifier for the external DTD subset,
 or null if none was declared.
Throws
 SAXException - If this method was not called appropriately.

public void endDTD()
 Report the end of DTD declarations.
Parameters
 chars - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.
Throws
 SAXException - If this method was not called appropriately.

public void startElement(String uri, String loc,
 String raw, Attributes a)
 Receive notification of the beginning of an element.
Throws
 SAXException - If this method was not called appropriately.

public void endElement(String uri, String loc, String raw)
 Receive notification of the end of an element.
Throws
 SAXException - If this method was not called appropriately.

public void startPrefixMapping(String prefix, String uri)
 Begin the scope of a prefix-URI Namespace mapping.
Parameters
 pre - The Namespace prefix being declared.
 uri - The Namespace URI the prefix is mapped to.

 434

Throws
 SAXException - If this method was not called appropriately.

public void endPrefixMapping(String prefix)
 End the scope of a prefix-URI mapping.
Parameters
 prefix - The Namespace prefix that was being mapped.

public void startCDATA()
 Report the start of a CDATA section.
Throws
 SAXException - If this method was not called appropriately.

public void endCDATA()
 Report the end of a CDATA section.
Throws
 SAXException - If this method was not called appropriately.
public void startEntity(String name)
 Report the beginning of an entity.
Parameters
 chars - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.
Throws
 SAXException - If this method was not called appropriately.

public void endEntity(String name)
 Report the end of an entity.
Parameters
 chars - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.
Throws
 SAXException - If this method was not called appropriately.

public void characters(char[] chars, int start, int len)
 Receive notification of character data.
Parameters
 chars - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.
Throws
 SAXException - If this method was not called appropriately.

public void ignorableWhitespace(char[] chars, int start, int len)
 Receive notification of ignorable whitespace data.
Parameters
 chars - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.
Throws
 SAXException - If this method was not called appropriately.

public void processingInstruction(String target, String data)
 Receive notification of a processing instruction.
Parameters
 target - The processing instruction target.

 435

 data - The processing instruction data.
Throws
 SAXException - If this method was not called appropriately.

public void comment(char[] chars, int start, int len)
 Report an XML comment anywhere in the document.
Parameters
 chars - The characters from the XML document.
 start - The start position in the array.
 len - The number of characters to read from the array.
Throws
 SAXException - If this method was not called appropriately.

public void skippedEntity(String name)
 Receive notification of a skipped entity.
Parameters
 name - The name of the skipped entity. If it is a parameter entity,
 the name will begin with '%'.

protected void notify(Document doc)
 Receive notification of a successfully completed DOM tree generation.

Fields

protected log

protected listener
 The listener

protected factory
 The document factory

Class DOMStreamer

DOMStreamer is a utility class that generates SAX events from a W3C DOM document.

Inheritance

extends org.apache.cocoon.xml.AbstractXMLProducer

Constructors

public DOMStreamer()
 Create a new DOMStreamer instance.

public DOMStreamer(XMLConsumer consumer)
 Create a new DOMStreamer instance.

public DOMStreamer(ContentHandler content)
 Create a new DOMStreamer instance.

public DOMStreamer(ContentHandler content, LexicalHandler lexical)

 436

 Create a new DOMStreamer instance.

Methods

public void stream(Node node)
 Start the production of SAX events.

Fields

protected static factory
 The transformer factory shared by all instances

protected transformer
 The private transformer for this instance

SAX

The SAX (Simple API for XML) model is an event-based approach. The SAX model is a
recommendation not hosted by the W3C, but it has reached the same acceptance. It is
programming language-independent and defines a set of interfaces dealing with the
various events occurring during XML parsing.

Package org.xml.sax

This is the core of the SAX model, containing all interfaces.

Interface Attributes

This is the interface for a list of XML attributes. This module, both source code and
documentation, is in the public domain, and it comes with no warranty.

This interface allows access to a list of attributes in three different ways:

• By attribute index
• By namespace-qualified name
• By qualified (prefixed) name

The list does not contain attributes that were declared #IMPLIED but were not specified in
the start tag. It also does not contain attributes used as namespace declarations (xmlns*)
unless the http://xml.org/sax/features/namespace-prefixes feature is set to true (it is
false by default).

If the namespace-prefixes feature is false, access by qualified name might not be
available. If the http://xml.org/sax/features/namespaces feature is false, access by
namespace-qualified names might not be available.

http://xml.org/sax/features/namespace-prefixes
http://xml.org/sax/features/namespaces

 437

This interface replaces the now-deprecated SAX1 @link org.xml.sax. AttributeList
AttributeList interface, which does not contain namespace support. In addition to
namespace support, it adds the getIndex methods.

The order of attributes in the list is unspecified. It varies from implementation to
implementation.

See also:

• org.xml.sax.helpers.AttributeListImpl

Methods

public int getLength()
 Return the number of attributes in the list.
 Once you know the number of attributes, you can iterate through the list.
Returns
 The number of attributes in the list.
See Also
 getURI(int)
 getLocalName(int)
 getQName(int)
 getType(int)
 getValue(int)

public String getURI(int index)
 Look up an attribute's Namespace URI by index.
Parameters
 index - The attribute index (zero-based).
Returns
 The Namespace URI, or the empty string if none is available, or null

if
 the index is out of range.
See Also
 getLength

public String getLocalName(int index)
 Look up an attribute's local name by index.
Parameters
 index - The attribute index (zero-based).
Returns
 The local name, or the empty string if Namespace processing is not being
 performed, or null if the index is out of range.
See Also
 getLength

public String getQName(int index)
 Look up an attribute's XML 1.0 qualified name by index.
Parameters
 index - The attribute index (zero-based).
Returns
 The XML 1.0 qualified name, or the empty string if none is available,
 or null if the index is out of range.

 438

See Also
 getLength

public String getType(int index)
 Look up an attribute's type by index.
 The attribute type is one of the strings "CDATA", "ID", "IDREF", "IDREFS",
 "NMTOKEN", "NMTOKENS", "ENTITY", "ENTITIES", or "NOTATION"
 (always in upper case).
 If the parser has not read a declaration for the attribute, or if the

parser
 does not report attribute types, then it must return the value "CDATA"

as
 stated in the XML 1.0 Recommendation (clause 3.3.3,).
 For an enumerated attribute that is not a notation, the parser will report
 the type as "NMTOKEN".
Parameters
 index - The attribute index (zero-based).
Returns
 The attribute's type as a string, or null if the index is out of range.
See Also
 getLength

public String getValue(int index)
 Look up an attribute's value by index.
 If the attribute value is a list of tokens (IDREFS, ENTITIES, or

NMTOKENS),
 the tokens will be concatenated into a single string with each token
 separated by a single space.
Parameters
 index - The attribute index (zero-based).
Returns
 The attribute's value as a string, or null if the index is out of range.
See Also
 getLength

public int getIndex(String uri, String localName)
 Look up the index of an attribute by Namespace name.
Parameters
 uri - The Namespace URI, or the empty string if the name has no
 Namespace URI.
 localName - The attribute's local name.
Returns
 The index of the attribute, or -1 if it does not appear in the list.

public int getIndex(String qName)
 Look up the index of an attribute by XML 1.0 qualified name.
Parameters
 qName - The qualified (prefixed) name.
Returns
 The index of the attribute, or -1 if it does not appear in the list.

public String getType(String uri, String localName)
 Look up an attribute's type by Namespace name.
 See getType(int) for a description of the possible types.
Parameters
 uri - The Namespace URI, or the empty String if the name has no
 Namespace URI.

 439

 localName - The local name of the attribute.
Returns
 The attribute type as a string, or null if the attribute is not in the
 list or if Namespace processing is not being performed.

public String getType(String qName)
 Look up an attribute's type by XML 1.0 qualified name.
 See getType(int) for a description of the possible types.
Parameters
 qName - The XML 1.0 qualified name.
Returns
 The attribute type as a string, or null if the attribute is not in the
 list or if qualified names are not available.

public String getValue(String uri, String localName)
 Look up an attribute's value by Namespace name.
 See getValue(int) for a description of the possible values.
Parameters
 uri - The Namespace URI, or the empty String if the name has no
 Namespace URI.
 localName - The local name of the attribute.
Returns
 The attribute value as a string, or null if the attribute is not in the

list.

public String getValue(String qName)
 Look up an attribute's value by XML 1.0 qualified name.
 See getValue(int) for a description of the possible values.
Parameters
 qName - The XML 1.0 qualified name.
Returns
 The attribute value as a string, or null if the attribute is not in the
 list or if qualified names are not available.

Interface ContentHandler

This interface receives notification of a document’s logical content. This module, both
source code and documentation, is in the public domain and comes with no warranty.

This is the main interface that most SAX applications implement. If the application needs
to be informed of basic parsing events, it implements this interface and registers an
instance with the SAX parser using the setContentHandler method. The parser uses the
instance to report basic document-related events such as the start and end of elements and
character data.

The order of events in this interface is very important. It mirrors the order of information
in the document itself. For example, all an element’s content (character data, processing
instructions, and/or subelements) appears, in order, between the startElement event and
the corresponding endElement event.

 440

This interface is similar to the now-deprecated SAX 1.0 DocumentHandler interface, but
it adds support for namespaces and for reporting skipped entities (in nonvalidating XML
processors).

Implementers should note that there is also a Java class ContentHandler in the
java.net package. This means that it’s probably a bad idea to do this:

import java.net.*;
import org.xml.sax.*;

In fact, this is usually a sign of sloppy programming anyway, so you should consider this
a feature rather than a bug.

See also:

• org.xml.sax.XMLReader
• org.xml.sax.DTDHandler
• org.xml.sax.ErrorHandler

Methods

public void setDocumentLocator(Locator locator)
 Receive an object for locating the origin of SAX document events.
 SAX parsers are strongly encouraged (though not absolutely required)

to
 supply a locator: if it does so, it must supply the locator to the
 application by invoking this method before invoking any of the other
 methods in the ContentHandler interface.
 The locator allows the application to determine the end position of any
 document-related event, even if the parser is not reporting an error.
 Typically, the application will use this information for reporting its

own
 errors (such as character content that does not match an application's
 business rules). The information returned by the locator is probably

not
 sufficient for use with a search engine.
 Note that the locator will return correct information only during the
 invocation of the events in this interface. The application should not
 attempt to use it at any other time.
Parameters
 locator - An object that can return the location of any SAX document

event.
See Also
 org.xml.sax.Locator

public void startDocument()
 Receive notification of the beginning of a document.
 The SAX parser will invoke this method only once, before any other methods
 in this interface or in DTDHandler (setDocumentLocator).
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another

 441

 exception.
See Also
 endDocument

public void endDocument()
 Receive notification of the end of a document.
 The SAX parser will invoke this method only once, and it will be the

last
 method invoked during the parse. The parser shall not invoke this method
 until it has either abandoned parsing (because of an unrecoverable error)
 or reached the end of input.
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
 exception.
See Also
 startDocument
public void startPrefixMapping(String prefix, String uri)
 Begin the scope of a prefix-URI Namespace mapping.
 The information from this event is not necessary for normal Namespace
 processing: the SAX XML reader will automatically replace prefixes for
 element and attribute names when the

http://xml.org/sax/features/namespaces
 feature is true (the default).
 There are cases, however, when applications need to use prefixes in

character
 data or in attribute values, where they cannot safely be expanded
 automatically; the start/endPrefixMapping event supplies the

information to
 the application to expand prefixes in those contexts itself, if
 necessary. Note that start/endPrefixMapping events are not guaranteed

to be
 properly nested relative to each-other: all startPrefixMapping events

will
 occur before the corresponding startElement event, and all
 endPrefixMapping events will occur after the corresponding endElement
 event, but their order is not otherwise guaranteed. There should never

be
 start/endPrefixMapping events for the "xml" prefix, since it is

predeclared
 and immutable.
Parameters
 prefix - The Namespace prefix being declared.
 uri - The Namespace URI the prefix is mapped to.
Throws
 org.xml.sax.SAXException - The client may throw an exception during
 processing.
See Also
 endPrefixMapping
 startElement

public void endPrefixMapping(String prefix)
 End the scope of a prefix-URI mapping.
 See startPrefixMapping for details. This event will always occur after

the
 corresponding endElement event, but the order of endPrefixMapping events

is
 not otherwise guaranteed.

 442

Parameters
 prefix - The prefix that was being mapping.
Throws
 org.xml.sax.SAXException - The client may throw an exception during
 processing.
See Also
 startPrefixMapping
 endElement

public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes atts)
 Receive notification of the beginning of an element.
 The Parser will invoke this method at the beginning of every element

in the
 XML document; there will be a corresponding endElement event for every
 startElement event (even when the element is empty). All of the element's
 content will be reported, in order, before the corresponding endElement
 event. This event allows up to three name components for each element:
 the Namespace URI, the local name, and the qualified (prefixed) name.
 Any or all of these may be provided, depending on the values of the
 http://xml.org/sax/features/namespaces and the
 http://xml.org/sax/features/namespace-prefixes properties:
 - the Namespace URI and local name are required when the namespaces

property
 is true (the default), and are optional when the namespaces property

is
 false (if one is specified, both must be);
 - the qualified name is required when the namespace-prefixes property

is
 true, and is optional when the namespace-prefixes property is false
 (the default).
 Note that the attribute list provided will contain only attributes with
 explicit values (specified or defaulted): #IMPLIED attributes will be
 omitted. The attribute list will contain attributes used for Namespace
 declarations (xmlns* attributes) only if the
 http://xml.org/sax/features/namespace-prefixes property is true (it is

false
 by default, and support for a true value is optional).
Parameters
 uri - The Namespace URI, or the empty string if the element has no
 Namespace URI or if Namespace processing is not being performed.
 localName - The local name (without prefix), or the empty string if
 Namespace processing is not being performed.
 qName - The qualified name (with prefix), or the empty string if qualified
 names are not available.
 atts - The attributes attached to the element. If there are no attributes,
 it shall be an empty Attributes object.
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
 exception.
See Also
 endElement
 org.xml.sax.Attributes

public void endElement(String namespaceURI,

 443

 String localName,
 String qName)
 Receive notification of the end of an element.
 The SAX parser will invoke this method at the end of every element in

the
 XML document; there will be a corresponding startElement event for every
 endElement event (even when the element is empty).
 For information on the names, see startElement.
Parameters
 uri - The Namespace URI, or the empty string if the element has no
 Namespace URI or if Namespace processing is not being performed.
 localName - The local name (without prefix), or the empty string if
 Namespace processing is not being performed.
 qName - The qualified XML 1.0 name (with prefix), or the empty string
 if qualified names are not available.
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
 exception.
public void characters(char[] ch, int start, int length)
 Receive notification of character data.
 The Parser will call this method to report each chunk of character data.
 SAX parsers may return all contiguous character data in a single chunk,
 or they may split it into several chunks; however, all of the characters
 in any single event must come from the same external entity so that the
 Locator provides useful information.
 The application must not attempt to read from the array outside of the
 specified range.
 Note that some parsers will report whitespace in element content using

the
 ignorableWhitespace method rather than this one (validating parsers must
 do so).
Parameters
 ch - The characters from the XML document.
 start - The start position in the array.
 length - The number of characters to read from the array.
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
 exception.
See Also
 ignorableWhitespace
 org.xml.sax.Locator

public void ignorableWhitespace(char[] ch, int start, int length)
 Receive notification of ignorable whitespace in element content.
 Validating Parsers must use this method to report each chunk of whitespace
 in element content (see the W3C XML 1.0 recommendation, section 2.10):
 non-validating parsers may also use this method if they are capable of
 parsing and using content models.
 SAX parsers may return all contiguous whitespace in a single chunk, or

they
 may split it into several chunks; however, all of the characters in any
 single event must come from the same external entity, so that the Locator
 provides useful information.
 The application must not attempt to read from the array outside of the
 specified range.
Parameters
 ch - The characters from the XML document.

 444

 start - The start position in the array.
 length - The number of characters to read from the array.
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
 exception.
See Also
 characters

public void processingInstruction(String target, String data)
 Receive notification of a processing instruction.
 The Parser will invoke this method once for each processing instruction
 found: note that processing instructions may occur before or after the

main
 document element.
 A SAX parser must never report an XML declaration (XML 1.0, section 2.8)

or a
 text declaration (XML 1.0, section 4.3.1) using this method.
Parameters
 target - The processing instruction target.
 data - The processing instruction data, or null if none was supplied.
 The data does not include any whitespace separating it from the
 target.
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
 exception.

public void skippedEntity(String name)
 Receive notification of a skipped entity.
 The Parser will invoke this method once for each entity skipped.
 Non-validating processors may skip entities if they have not seen the
 declarations (because, for example, the entity was declared in an
 external DTD subset). All processors may skip external entities,
 depending on the values of the
 http://xml.org/sax/features/external-general-entities and the
 http://xml.org/sax/features/external-parameter-entities properties.
Parameters
 name - The name of the skipped entity. If it is a parameter entity, the
 name will begin with '%', and if it is the external DTD subset,
 it will be the string "[dtd]".
Throws
 org.xml.sax.SAXException - Any SAX exception, possibly wrapping another
exception.

Class InputSource

This is a single input source for an XML entity. This module, both source code and
documentation, is in the public domain and comes with no warranty.

This class allows a SAX application to encapsulate information about an input source in a
single object, which may include a public identifier, a system identifier, a byte stream
(possibly with a specified encoding), and/or a character stream.

 445

There are two places that the application delivers this input source to the parser: as the
argument to the Parser.parse method, or as the return value of the
EntityResolver.resolveEntity method.

The SAX parser uses the InputSource object to determine how to read XML input. If a
character stream is available, the parser reads that stream directly. If not, the parser uses a
byte stream, if available. If neither a character stream nor a byte stream is available, the
parser attempts to open a URI connection to the resource identified by the system
identifier.

An InputSource object belongs to the application. The SAX parser never modifies it in
any way. (It may modify a copy if necessary.)

See also:

• org.xml.sax.Parser parse
• org.xml.sax.EntityResolver resolveEntity
• java.io.InputStream
• java.io.Reader

Constructors

public InputSource()
 Zero-argument default constructor.
See Also
 setPublicId
 setSystemId
 setByteStream
 setCharacterStream
 setEncoding

public InputSource(String systemId)
 Create a new input source with a system identifier.
 Applications may use setPublicId to include a public identifier as well,
 or setEncoding to specify the character encoding, if known.
 If the system identifier is a URL, it must be full resolved.
Parameters
 systemId - The system identifier (URI).
See Also
 setPublicId
 setSystemId
 setByteStream
 setEncoding
 setCharacterStream

public InputSource(InputStream byteStream)
 Create a new input source with a byte stream.
 Application writers may use setSystemId to provide a base for resolving
 relative URIs, setPublicId to include a public identifier, and/or

setEncoding
 to specify the object's character encoding.

 446

Parameters
 byteStream - The raw byte stream containing the document.
See Also
 setPublicId
 setSystemId
 setEncoding
 setByteStream
 setCharacterStream

public InputSource(Reader characterStream)
 Create a new input source with a character stream.
 Application writers may use setSystemId() to provide a base for resolving
 relative URIs, and setPublicId to include a public identifier.
 The character stream shall not include a byte order mark.
See Also
 setPublicId
 setSystemId
 setByteStream
 setCharacterStream
 setCharacterStream

Methods

public void setPublicId(String publicId)
 Set the public identifier for this input source.
 The public identifier is always optional: if the application writer

includes
 one, it will be provided as part of the location information.
Parameters
 publicId - The public identifier as a string.
See Also
 getPublicId
 org.xml.sax.Locator#getPublicId
 org.xml.sax.SAXParseException#getPublicId

public String getPublicId()
 Get the public identifier for this input source.
Returns
 The public identifier, or null if none was supplied.
See Also
 setPublicId

public void setSystemId(String systemId)
 Set the system identifier for this input source.
 The system identifier is optional if there is a byte stream or a character
 stream, but it is still useful to provide one, since the application

can use
 it to resolve relative URIs and can include it in error messages and

warnings
 (the parser will attempt to open a connection to the URI only if there

is no
 byte stream or character stream specified).
 If the application knows the character encoding of the object pointed

to by
 the system identifier, it can register the encoding using the setEncoding

 447

 method. If the system ID is a URL, it must be fully resolved.
Parameters
 systemId - The system identifier as a string.
See Also
 setEncoding
 getSystemId
 org.xml.sax.Locator#getSystemId
 org.xml.sax.SAXParseException#getSystemId

public String getSystemId()
 Get the system identifier for this input source.
 The getEncoding method will return the character encoding of the object
 pointed to, or null if unknown.
 If the system ID is a URL, it will be fully resolved.
Returns
 The system identifier, or null if none was supplied.
See Also
 setSystemId
 getEncoding

public void setByteStream(InputStream byteStream)
 Set the byte stream for this input source.
 The SAX parser will ignore this if there is also a character stream
 specified, but it will use a byte stream in preference to opening a URI
 connection itself. If the application knows the character encoding of

the
 byte stream, it should set it with the setEncoding method.
Parameters
 byteStream - A byte stream containing an XML document or other entity.
See Also
 setEncoding
 getByteStream
 getEncoding
 java.io.InputStream

public java.io.InputStream getByteStream()
 Get the byte stream for this input source.
 The getEncoding method will return the character encoding for this byte
 stream, or null if unknown.
Returns
 The byte stream, or null if none was supplied.
See Also
 getEncoding
 setByteStream

public void setEncoding(String encoding)
 Set the character encoding, if known.
 The encoding must be a string acceptable for an XML encoding declaration
 (see section 4.3.3 of the XML 1.0 recommendation).
 This method has no effect when the application provides a character

stream.
Parameters
 encoding - A string describing the character encoding.
See Also
 setSystemId
 setByteStream
 getEncoding

 448

public String getEncoding()
 Get the character encoding for a byte stream or URI.
Returns
 The encoding, or null if none was supplied.
See Also
 setByteStream
 getSystemId
 getByteStream

public void setCharacterStream(Reader characterStream)
 Set the character stream for this input source.
 If there is a character stream specified, the SAX parser will ignore

any byte
 stream and will not attempt to open a URI connection to the system
 identifier.
Parameters
 characterStream - The character stream containing the XML document
 or other entity.
See Also
 getCharacterStream
 java.io.Reader

public java.io.Reader getCharacterStream()
 Get the character stream for this input source.
Returns
 The character stream, or null if none was supplied.
See Also
 setCharacterStream

Class SAXException

Encapsulate a general SAX error or warning. This module, both source code and
documentation, is in the public domain and comes with no warranty.

This class can contain basic error or warning information from either the XML parser or
the application. A parser writer or application writer can subclass it to provide additional
functionality. SAX handlers may throw this exception or any exception subclassed from
it.

If the application needs to pass through other types of exceptions, it must wrap those
exceptions in a SAXException or an exception derived from a SAXException. If the
parser or application needs to include information about a specific location in an XML
document, it should use the @link org.xml.sax.SAXParseException
SAXParseException subclass.

See also:

• org.xml.sax.SAXParseException

Inheritance

 449

extends Exception

Constructors

public SAXException()
 Create a new SAXException.

public SAXException(String message)
 Create a new SAXException.
Parameters
 message - The error or warning message.
See Also
 org.xml.sax.Parser#setLocale
 public SAXException(Exception e)
 Create a new SAXException wrapping an existing exception.
 The existing exception will be embedded in the new one, and its message

will
 become the default message for the SAXException.
Parameters
 e - The exception to be wrapped in a SAXException.

public SAXException(String message, Exception e)
 Create a new SAXException from an existing exception.
 The existing exception will be embedded in the new one, but the new

exception
 will have its own message.
Parameters
 message - The detail message.
 e - The exception to be wrapped in a SAXException.
See Also
 org.xml.sax.Parser#setLocale

Methods

public String getMessage()
 Return a detail message for this exception.
 If there is an embedded exception, and if the SAXException has no detail
 message of its own, this method will return the detail message from the
 embedded exception.
Returns
 The error or warning message.
See Also
 org.xml.sax.Parser#setLocale

public Exception getException()
 Return the embedded exception, if any.
Returns
 The embedded exception, or null if there is none.

public String toString()
 Override toString to pick up any embedded exception.
Returns
 A string representation of this exception.

 450

Package org.xml.sax.ext

This package contains some optional extensions to the SAX core.

Interface LexicalHandler

This is a SAX2 extension handler for lexical events. This module, both source code and
documentation, is in the public domain and comes with no warranty.

This is an optional extension handler for SAX2 to provide lexical information about an
XML document, such as comments and CDATA section boundaries. XML readers are
not required to support this handler, and it is not part of the core SAX2 distribution.

The events in the lexical handler apply to the entire document, not just to the document
element, and all lexical handler events must appear between the content handler’s
startDocument and endDocument events.

To set the LexicalHandler for an XML reader, use the @link
org.xml.sax.XMLReader#setProperty setProperty method with the propertyId
"http://xml.org/sax/properties/lexical-handler". If the reader does not support lexical
events, it throws a @link org.xml.sax.SAXNotRecognizedException
SAXNotRecognizedException or a @link org.xml.sax.SAXNotSupportedException
SAXNotSupportedException when you attempt to register the handler.

See also:

• org.xml.sax.XMLReader#setProperty
• org.xml.sax.SAXNotRecognizedException
• org.xml.sax.SAXNotSupportedException

Methods

public void startDTD(String name, String publicId, String systemId)
 Report the start of DTD declarations, if any.
 This method is intended to report the beginning of the DOCTYPE

declaration;
 if the document has no DOCTYPE declaration, this method will not be

invoked.
 All declarations reported through DTDHandler or DeclHandler events must
 appear between the startDTD and endDTD events. Declarations are assumed

to belong to the internal DTD subset unless they appear between
startEntity and endEntity events. Comments and processing instructions
from the DTD should also be reported between the startDTD and endDTD
events, in their original order of (logical) occurrence; they are not
required to appear in their correct locations relative to DTDHandler
or DeclHandler events, however. Note that the start/endDTD events will
appear within the start/endDocument events from ContentHandler and
before the first startElement event.

http://xml.org/sax/properties/lexical-handler

 451

Parameters
 name - The document type name.
 publicId - The declared public identifier for the external DTD subset,
 or null if none was declared.
 systemId - The declared system identifier for the external DTD subset,
 or null if none was declared.
Throws
 SAXException - The application may raise an exception.
See Also
 endDTD
 startEntity

public void endDTD()
 Report the end of DTD declarations.
 This method is intended to report the end of the DOCTYPE declaration;
 if the document has no DOCTYPE declaration, this method will not be

invoked.
Throws
 SAXException - The application may raise an exception.
See Also
 startDTD

public void startEntity(String name)
 Report the beginning of some internal and external XML entities.
 The reporting of parameter entities (including the external DTD subset)

is optional, and SAX2 drivers that support LexicalHandler may not support
it; you can use the http://xml.org/sax/features/lexical-handler/

 parameter-entities feature to query or control the reporting of
 parameter entities. General entities are reported with their regular
 names, parameter entities have '%' prepended to their names, and the
 external DTD subset has the pseudo-entity name "[dtd]".
 When a SAX2 driver is providing these events, all other events must be
 properly nested within start/end entity events. There is no additional
 requirement that events from DeclHandler or DTDHandler be properly

ordered. Note that skipped entities will be reported through the
skippedEntity event, which is part of the ContentHandler interface.

 Because of the streaming event model that SAX uses, some entity boundaries
 cannot be reported under any circumstances:
 - general entities within attribute values
 - parameter entities within declarations
 These will be silently expanded, with no indication of where the original
 entity boundaries were.
 Note also that the boundaries of character references (which are not

really entities anyway) are not reported.
 All start/endEntity events must be properly nested.
Parameters
 name - The name of the entity. If it is a parameter entity, the name

will begin with '%', and if it is the external DTD subset, it will be
"[dtd]".

Throws
 SAXException - The application may raise an exception.
See Also
 endEntity
 org.xml.sax.ext.DeclHandler#internalEntityDecl
 org.xml.sax.ext.DeclHandler#externalEntityDecl

public void endEntity(String name)

 452

 Report the end of an entity.
Parameters
 name - The name of the entity that is ending.
Throws
 SAXException - The application may raise an exception.
See Also
 #startEntity

public void startCDATA()
 Report the start of a CDATA section.
 The contents of the CDATA section will be reported through the regular
 characters event; this event is intended only to report the boundary.
Throws
 SAXException - The application may raise an exception.
See Also
 #endCDATA

public void endCDATA()
 Report the end of a CDATA section.
Throws
 SAXException - The application may raise an exception.
See Also
 #startCDATA

public void comment(char[] ch, int start, int length)
 Report an XML comment anywhere in the document.
 This callback will be used for comments inside or outside the document
 element, including comments in the external DTD subset (if read).
 Comments in the DTD must be properly nested inside start/endDTD and
 start/endEntity events (if used).
Parameters
 ch - An array holding the characters in the comment.
 start - The starting position in the array.
 length - The number of characters to use from the array.
Throws
 SAXException - The application may raise an exception.

 453

Appendix C. Links on the Web

There is a lot of additional information about Cocoon and related subjects available on
the web. For the most part, we kept web links out of the text because we felt that it would
make more sense to collect them in an appendix at the end.

Links are listed according to the first chapter they appear in. Some chapters are not
covered because they have no relevant links that need to be listed.

Chapter 1, “An Introduction to Internet Applications”

History of the Web

http://www.w3.org/History.html

Internet Timeline

http://www.zakon.org/robert/internet/timeline/

Introduction to CGI

http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

History of the Apache Server

http://httpd.apache.org/ABOUT_APACHE.html

History of Microsoft’s IIS

http://www.webdeveloper.com/servers/servers_dynamic_iis.html

http://www.w3.org/History.html
http://www.zakon.org/robert/internet/timeline/
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html
http://httpd.apache.org/ABOUT_APACHE.html
http://www.webdeveloper.com/servers/servers_dynamic_iis.html

 454

Chapter 2, “Building the Machine Web with XML”

Introducing Tim Berners Lee

http://www.w3.org/People/Berners-Lee/ShortHistory.html

W3C Home Page

http://www.w3.org/

XML Specifications and Documentation

http://www.w3.org/XML/

XSLT Specification

http://www.w3.org/TR/xslt

Xpath Specification

http://www.w3.org/TR/xpath

Apache Xalan Project: Java Version

http://xml.apache.org/xalan-j/index.html

Apache Xerces Project: Java Version

http://xml.apache.org/xerces-j/index.html

LotusXSL and IBM XML4J

http://www.alphaworks.ibm.com/aw.nsf/FAQs/lotusxsl

Introduction to Native XML Databases

http://www.xml.com/lpt/a/2001/10/31/nativexmldb.html

List of XML Database Products

http://www.rpbourret.com/xml/XMLDatabaseProds.htm

http://www.w3.org/People/Berners-Lee/ShortHistory.html
http://www.w3.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/xerces-j/index.html
http://www.alphaworks.ibm.com/aw.nsf/FAQs/lotusxsl
http://www.xml.com/lpt/a/2001/10/31/nativexmldb.html
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

 455

Apache XML Database: Xindice (Formerly dbXML)

http://xml.apache.org/xindice/

Software AG Tamino XML Database

http://www.softwareag.com/taminoplatform/

Oracle and XML

http://www.oracle.com/xml/

Moreover News Provider

http://www.moreover.com

Apache Cocoon Project

http://xml.apache.org/cocoon/

Chapter 3, “Getting Started with Cocoon”

Cocoon Distribution Directory

http://xml.apache.org/cocoon/dist/

Sun Java SDK

http://java.sun.com/j2se/

Apache Tomcat Servlet Engine Home Page

http://jakarta.apache.org/tomcat/index.html

Cocoon Mailing Lists

http://xml.apache.org/cocoon/mail-lists.html

Mailing Lists Archive

http://marc.theaimsgroup.com/

http://xml.apache.org/xindice/
http://www.softwareag.com/taminoplatform/
http://www.oracle.com/xml/
http://www.moreover.com/
http://xml.apache.org/cocoon/
http://xml.apache.org/cocoon/dist/
http://java.sun.com/j2se/
http://jakarta.apache.org/tomcat/index.html
http://xml.apache.org/cocoon/mail-lists.html
http://marc.theaimsgroup.com/

 456

Cocoon Frequently Asked Questions (FAQs)

http://xml.apache.org/cocoon/faq.html

Information on Installing Cocoon

http://xml.apache.org/cocoon/installing/index.html

Cocoon CVS

http://cvs.apache.org/viewcvs.cgi/xml-cocoon2/

Chapter 4, “Putting Cocoon to Work”

Apache FOP Project Home Page

http://xml.apache.org/fop/index.html

Scalable Vector Graphics (SVG) Format

http://www.w3.org/Graphics/SVG/

Apache SVG Project

http://xml.apache.org/batik/index.html

XSL Formatting Objects

http://www.w3.org/TR/xslt/

JTidy Project

http://sourceforge.net/projects/jtidy/

Chapter 5, “Cocoon News Portal: Entry Version”

Resource Description Framework (RDF) Specification

http://www.w3.org/TR/REC-rdf-syntax/

http://xml.apache.org/cocoon/faq.html
http://xml.apache.org/cocoon/installing/index.html
http://cvs.apache.org/viewcvs.cgi/xml-cocoon2/
http://xml.apache.org/fop/index.html
http://www.w3.org/Graphics/SVG/
http://xml.apache.org/batik/index.html
http://www.w3.org/TR/xslt/
http://sourceforge.net/projects/jtidy/
http://www.w3.org/TR/REC-rdf-syntax/

 457

RDF Site Summary Specification

http://groups.yahoo.com/group/rss-dev/files/specification.html

LinuxToday

http://www.linuxtoday.com/

Chapter 7, “Cocoon News Portal: Extended Version”

HSQL Database Project

http://sourceforge.net/projects/hsqldb/

Chapter 8, “A Developer’s Look at the Cocoon Architecture”

Apache Avalon Project

http://jakarta.apache.org/avalon/

Developing with Apache Avalon

http://jakarta.apache.org/avalon/developing/index.html

Software Design Patterns

http://www.patterndepot.com

SAX Home Page

http://www.saxproject.org/

Chapter 9, “Developing Components for Cocoon”

JavaMail API

http://java.sun.com/products/javamail/index.html

http://groups.yahoo.com/group/rss-dev/files/specification.html
http://www.linuxtoday.com/
http://sourceforge.net/projects/hsqldb/
http://jakarta.apache.org/avalon/
http://jakarta.apache.org/avalon/developing/index.html
http://www.patterndepot.com/
http://www.saxproject.org/
http://java.sun.com/products/javamail/index.html

 458

JavaBeans Activation Framework

http://java.sun.com/products/javabeans/glasgow/jaf.html

Chapter 11, “Designing Cocoon Applications”

XMLSpy

http://www.xmlspy.com/

XMetal

http://www.xmetal.com

CookTop

http://www.xmlcooktop.com

http://java.sun.com/products/javabeans/glasgow/jaf.html
http://www.xmlspy.com/
http://www.xmetal.com/
http://www.xmlcooktop.com/

	Table of Content
	About the Authors
	Acknowledgments
	Tell Us What You Think
	Introduction
	Who Should Read This Book
	Who This Book Is Not For
	Overview
	Conventions Used in This Book

	Chapter 1. An Introduction to Internet Applications
	A Brief History of Internet Applications
	Static Pages
	Figure 1.1. A web server delivers static HTML.

	Programmable Components
	Figure 1.2. An integrated component generates HTML from a template.

	Scripting Languages
	
	Figure 1.3. Standardized scripting allows dynamic HTML generation.
	Listing 1.1 Sample ASP Code

	Flexible Publishing

	Application Architectures
	Clients
	Middleware
	Back-End Systems
	Cocoon in the Middle
	Figure 1.4. A Cocoon-based, three-tier architecture.

	The Challenges of Building Internet Applications
	Personalizing Content
	Integrating Applications
	Platform-Independent Solution
	Flexible Architecture

	Using Cocoon to Meet the Challenges

	Chapter 2. Building the Machine Web with XML
	HTML Applications
	The Meaning of Data
	Listing 2.1 A Simple HTML Table

	Extracting Data from Screens

	XML Arrives on the Scene
	Extensible Markup Language (XML)
	Building an Open Format
	What’s Your Format?
	Listing 2.2 Customer XML Format
	Listing 2.3 Bad Customer Example
	Publishing the Format
	Listing 2.4 Sample Customers
	Listing 2.5 A Real Customer
	Listing 2.6 Customer Format as DTD
	Listing 2.7 The Customer Format as a Schema
	Global Definitions
	Listing 2.8 Customer Example with Namespace

	Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT)
	
	Listing 2.9 Simple Stylesheet Example for the Customer Data
	Figure 2.1. XSL processing flow.

	Using Standard Components
	Xerces: An XML Parser
	Xalan: An XSLT Processor
	Key Components

	Building XML Applications
	Multichannel Publishing
	Figure 2.2. Integrating multichannel publishing.

	Integrating Data Sources
	XML Services
	XML Databases
	Mainframes

	Integrating Applications
	Personalizing Information
	Platform-Independent Solutions
	Flexibility
	Building an XML Solution

	Apache Cocoon
	The Project
	Open Source
	Using Cocoon

	Summary

	Chapter 3. Getting Started with Cocoon
	Prerequisites for Installing Cocoon
	Step-by-Step Instructions
	Using Apache Tomcat As the Servlet Engine
	Obtaining Tomcat
	Installing Tomcat
	Setting Up the Environment
	Starting Tomcat

	Installing Cocoon
	Figure 3.1. The Cocoon welcome page.

	Common Problems and Finding Help
	HSQL Errors
	Communication Between Cocoon and the Browser
	Xerces Conflicts
	Using a Different Servlet Engine
	What to Do if Something Is Still Wrong

	Accessing the Samples
	Multimedia Hello World
	Documentation
	News Feeds
	Dynamic Content
	Sample Forms
	System Pages
	Completing the Sample Tour

	Obtaining a Newer Version of Cocoon
	Downloading Binary Releases of Cocoon
	Building Your Own Version of Cocoon from Source

	On We Go

	Chapter 4. Putting Cocoon to Work
	Cocoon: The Big Picture
	
	Figure 4.1. Cocoon: The big picture.

	Requests and Responses
	Contexts Everywhere
	Generating Documents
	The Sitemap
	Listing 4.1 The Global Sitemap Structure

	A Closer Look at the Sitemap
	The Hello World Example
	Listing 4.2 The Hello World Page
	Listing 4.3 The Hello World Document in XML
	Listing 4.4 The Hello World Document Stylesheet
	Figure 4.2. The Hello World example.

	Sitemap Components
	Figure 4.3. A Cocoon pipeline.
	Generator
	Transformer
	Figure 4.4. A Cocoon pipeline containing commands and data.
	Serializer
	Matcher

	The Sitemap Pipelines
	Listing 4.5 A Separate Match for Each Document
	Listing 4.6 A Separate Match for Each Component

	Getting Practical
	
	Listing 4.7 The First Sitemap
	Listing 4.8 Using Explicit Type Definitions

	Resolving Resources
	Common Components
	The File Generator
	Listing 4.9 The File Generator
	The html Generator
	Listing 4.10 The html Generator
	The Directory Generator and the Image Directory Generator
	Listing 4.11 The Directory Generator and the Image Directory Generator
	Listing 4.12 Sample Output for the Directory Generator
	The Request Generator
	Listing 4.13 The Request Generator
	Listing 4.14 Sample Output for the Request Generator
	The Status Generator
	Listing 4.15 The Status Generator
	Listing 4.16 An Example of the Status Generator
	The xslt Transformer
	Listing 4.17 The xslt Transformer
	The html Serializer
	Listing 4.18 The html Serializer
	Listing 4.19 Setting the Encoding of the html Serializer
	The xml Serializer
	Listing 4.20 The xml Serializer
	The Wildcard Matcher
	Listing 4.21 The Wildcard Matcher

	Configurable Components
	Listing 4.22 The wml Serializer

	Parameters
	Listing 4.23 Defining Parameters for a Sitemap Component

	Error Handling
	Listing 4.24 An Example of an Error Handler
	Listing 4.25 Sample Output for the Error Generator

	Basic Examples Using Cocoon
	Someone Else’s HTML
	Listing 4.26 A Sitemap Fragment
	Listing 4.27 The Stylesheet to Alter the Retrieved HTML
	Figure 4.5. A stylesheet alters the layout.
	Picture Gallery
	Listing 4.28 A Sitemap Fragment
	Listing 4.29 A Gallery Stylesheet
	Figure 4.6. The gallery.
	Personalized Picture Gallery
	Listing 4.30 A Sitemap Fragment for the Personalized Picture Gallery
	Listing 4.31 The Personalized Picture Gallery Stylesheet
	Figure 4.7. The color gallery.

	More Sitemap Components
	Selectors
	Listing 4.32 A Browser Selector Example
	Actions
	Readers

	Pipelines Revisited
	Pattern Matching
	Value Substitution
	Figure 4.8. Value substitution.
	Figure 4.9. Complex value substitution.
	More About the Processing Flow

	Advanced Components and Examples
	Components
	PDF Serializer
	Listing 4.33 FOP Serializers
	SVG Serializer
	Listing 4.34 SVG Serializers
	Browser Selector
	Listing 4.35 The Browser Selector
	Parameter Selector
	Listing 4.36 The Parameter Selector
	Resource-Exists Action
	Listing 4.37 The resource-exists Action
	Request Parameter Action
	Listing 4.38 The request Action
	Resource Reader
	Listing 4.39 The Resource Reader

	Examples
	Your First PDF
	Listing 4.40 A Pipeline Fragment
	Listing 4.41 Data for the PDF Document
	Listing 4.42 The FOP Stylesheet
	Figure 4.10. The first PDF document.
	Downloading
	Listing 4.43 A Pipeline Fragment
	Listing 4.44 The XML Document filenotfound.xml
	Listing 4.45 The XSL Stylesheet filenotfound2html.xsl
	SVG
	Figure 4.11. The enhanced gallery.
	Listing 4.46 A Pipeline Fragment for SVG Graphics
	Listing 4.47 The SVG Document
	Listing 4.48 The Stylesheet That Replaces the label Element
	Listing 4.49 A Pipeline Fragment for the Gallery
	Listing 4.50 The Stylesheet for the Gallery

	Summary

	Chapter 5. Cocoon News Portal: Entry Version
	Which Data Sources?
	
	Listing 5.1 Sample RSS Data

	Designing the Layout
	HTML
	Listing 5.2 The Stylesheet for Formatting RSS into HTML
	WML
	Listing 5.3 The Stylesheet for Formatting RSS into WML
	XSL:FO (PDF)
	Listing 5.4 The Stylesheet for Formatting RSS into XSL:FO

	The Application Architecture
	
	Listing 5.5 The Pipeline for Accessing linuxtoday.com

	Putting It All Together
	Adding News Sources
	Listing 5.6 The Pipeline for Accessing moreover.com
	Listing 5.7 The Complete Sitemap Entry

	An Index Page
	Listing 5.8 The XML Format for the Index Page
	Listing 5.9 The Stylesheet to Format the Index File
	Listing 5.10 The Pipeline for the Index Page

	The Complete Entry Version

	Chapter 6. A User’s Look at the Cocoon Architectu
	The Cocoon Architecture in Detail
	
	Figure 6.1. The big picture of Cocoon.

	Avalon Integrated into Cocoon
	The Web Application Configuration
	Listing 6.1 The Avalon Configuration Location in web.xml

	Configuring Components in cocoon.xconf
	Listing 6.2 An Excerpt from cocoon.xconf
	Listing 6.3 Allowing Cocoon Reloading in web.xml

	Sitemap Reloading
	LogKit Configuration
	Listing 6.4 The Location of the LogKit Configuration in the Web Application Deployment Descriptor
	Listing 6.5 An Excerpt from the LogKit Configuration

	How Requests Are Processed Inside Cocoon
	SAX Event Handling
	Figure 6.2. SAX event handling.
	Listing 6.6 An Example of Dependent Components
	Listing 6.7 A Pipeline of Dependent Components
	Figure 6.3. Incorrect chaining of dependent transformers.
	Figure 6.4. Using an intermediate stylesheet.

	Advanced Sitemap Features
	Action-Sets
	Listing 6.8 An Example of an Action-Set
	Figure 6.5. Value substitution for action-sets.

	Protocols
	The Implicit Protocol
	The Context Protocol
	The Resource Protocol
	The Cocoon Protocol

	Content Aggregation
	Listing 6.9 An Example of Content Aggregation
	Listing 6.10 Aggregated Content

	Subsitemaps
	Figure 6.6. Subsitemaps.
	Listing 6.11 A Basic Example of Mounting a Subsitemap
	Listing 6.12 Mounting a Subsitemap with Prefix
	Listing 6.13 An Example Subsitemap

	Views
	Listing 6.14 Views
	Listing 6.15 The Link Serializer
	Listing 6.16 An Example of Labeled Views
	Figure 6.7. A simple example of using views.
	Figure 6.8. An advanced example of using views.

	Sitemap Resources
	Listing 6.17 An Example of a Sitemap Resource

	Redirects
	Listing 6.18 Examples of Redirects

	Connecting to a Database
	Listing 6.19 SQL Transformer
	Listing 6.20 A Simple SQL Example
	Listing 6.21 The Document after a SQL Transformer Run

	Logging
	Listing 6.22 The Log Transformer

	Using the Command-Line Interface
	
	Listing 6.23 Cocoon’s Command-Line Interface

	Practical Examples and Tips
	A SQL Example
	Listing 6.24 Adding Drivers
	Listing 6.25 Configuring Data Sources
	Listing 6.26 A Simple SQL Example
	Listing 6.27 A Simple SQL Stylesheet
	Listing 6.28 A Sample SQL Pipeline

	The Cocoon Documentation System
	Figure 6.9. The Cocoon documentation.
	Listing 6.29 An Excerpt from the Cocoon Documentation Sitemap

	The Cocoon Caching Mechanism
	Listing 6.30 Turning on Caching in cocoon.xconf
	Listing 6.31 Turning off Caching

	Pooling Your Components
	Listing 6.32 An Example of a Pooling Configuration

	Wrapping Up the User Perspective

	Chapter 7. Cocoon News Portal: Extended Version
	Designing the Portal
	Logging In to the Portal
	Figure 7.1. The Login page.
	Figure 7.2. The Portal page containing the selected news feeds.

	Editing the News Feeds
	Figure 7.3. The Edit page allows news feeds to be deleted or added.

	Integrating Data Sources into the Portal
	Storing Information in the Database
	Adding Tables to HSQL
	Listing 7.1 Additional Entries for the cocoondb.script
	Configuring a Connection in cocoon.xconf
	Listing 7.2 Adding a New Database Connection

	Your Portal News Provider: Moreover.com

	Building the Portal’s Functionality
	Logging In to the Portal
	Listing 7.3 The Pipeline to Generate the Login Form
	Listing 7.4 XML Data for the Entry Form
	Listing 7.5 The Stylesheet That Presents the Login Form

	Authenticating the User
	Listing 7.6 login.xml
	Listing 7.7 A Stylesheet to Generate the Authentication select Statements
	Listing 7.8 A Pipeline Fragment
	Listing 7.9 A Stylesheet to Generate the News Feeds select Statement
	Listing 7.10 A Pipeline Fragment
	Listing 7.11 The Stylesheet That Builds Statements for the cinclude Transformer
	Listing 7.12 A Pipeline Fragment
	Listing 7.13 The Stylesheet That Formats the Portal XML into HTML
	Listing 7.14 The Complete Pipeline

	Editing the News Feeds
	Listing 7.15 The Start of the Edit Pipeline
	Listing 7.16 editfeeds.xml
	Listing 7.17 A Pipeline Fragment
	Listing 7.18 editfeeds.xsl
	Listing 7.19 A Pipeline Fragment
	Listing 7.20 displayfeeds.xsl
	Listing 7.21 dbfeeds.xml
	Listing 7.22 The Complete Pipeline That Allows Feeds to Be Altered

	Closing the Portal

	Chapter 8. A Developer’s Look at the Cocoon Archi
	
	
	Figure 8.1. The Cocoon big picture.

	The Avalon Component Model
	Defining Components
	The Component Manager
	Listing 8.1 The Component Manager Interface
	Listing 8.2 The Parser Role
	Listing 8.3 Using an Avalon Component
	Listing 8.4 Using an Avalon Component Selector

	A Component’s Life Cycle
	The Contextualizable Interface
	Listing 8.5 The Context and Contextualizable Interfaces
	The Composable Interface
	Listing 8.6 The Composable Interface
	The Configurable Interface
	Listing 8.7 The Configurable and Configuration Interfaces
	The Parameterizable Interface
	Listing 8.8 The Parameterizable Interface and the Parameters Class
	The Initializable Interface
	Listing 8.9 The Initializable Interface
	The Disposable Interface
	Listing 8.10 The Disposable Interface

	Pooling Components
	Listing 8.11 The SingleThreaded and ThreadSafe Interfaces
	Listing 8.12 The Poolable and Recyclable Interfaces

	Logging with the LogKit
	Listing 8.13 The Logger Class
	Listing 8.14 The Loggable Interface

	The Whole Story about Component Handling

	SAX Event Handling
	
	Listing 8.15 The ContentHandler Interface
	Listing 8.16 The XMLProducer and XMLConsumer Interfaces

	Cocoon Internals
	
	Listing 8.17 The Processor Interface
	Listing 8.18 The Environment Interface
	Listing 8.19 The Request and Response Interfaces

	Processing the Sitemap
	The Stream Pipeline
	The Reader Component
	Listing 8.20 The Reader Interface
	The Event Pipeline and Serializer
	Listing 8.21 The Serializer Interface
	Listing 8.22 The Generator Interface
	Listing 8.23 The Transformer Interface
	Figure 8.2. Processing steps.

	Source Resolving
	Listing 8.24 The SourceResolver Interface
	Listing 8.25 The Source Interface
	Listing 8.26 Using a Source Object

	Enough Theory

	Chapter 9. Developing Components for Cocoon
	What Is Needed to Develop Cocoon Components
	Sitemap Components
	General Hints
	Actions
	Listing 9.1 The Action Interface
	Listing 9.2 The RandomAction Class

	Readers
	Listing 9.3 The Reader Interface
	Listing 9.4 The AbstractReader Class

	Generators
	Listing 9.5 The Generator Interface
	Listing 9.6 The ComposerGenerator Class
	Listing 9.7 The ZipGenerator Class

	Transformers
	Listing 9.8 The Transformer Interface
	Listing 9.9 The AbstractTransformer Class
	Listing 9.10 The Initialization of SendMailTransformer
	Listing 9.11 The startElement and characters Events
	Listing 9.12 The endElement Events

	Selectors
	Listing 9.13 The Selector Interface
	Listing 9.14 The SeasonSelector Class

	Advanced Components
	Making Components Cacheable
	Listing 9.15 The Cacheable Interface
	Listing 9.16 The CacheValidity Interface
	A Cacheable Reader
	Listing 9.17 The CacheableZipReader
	A Cacheable Generator

	Creating a Protocol
	Listing 9.18 The SourceFactory Interface
	Listing 9.19 The ZipSourceFactory Class
	Listing 9.20 The ZipSource Class
	Listing 9.21 Standard Methods of ZipSource
	Listing 9.22 XML Support for the ZipSource Class
	Listing 9.23 The getInputStream Method

	Writing a Mail Component
	The Mail Component
	Listing 9.24 The Mail Component
	Listing 9.25 The Mail Component Implementation
	Adding Roles
	Using the Mail Component
	Listing 9.26 Using the Mail Component

	Wrapping Up the Developer Perspective

	Chapter 10. Cocoon News Portal: Advanced Version
	Extensible Server Pages (XSP)
	Hello World with XSP
	What Are Logicsheets?
	Lights, Camera, Action: When to Use XSP

	Extending the Extended Portal
	Adding Sessions
	Database Queries with XSP

	Building the Portal with XSP
	The Start Document
	Extending the Custom Logicsheet
	The Portal Document
	The Edit Document

	Adding New Features
	The Logout Document
	Last Logged In
	Random Cocoon Tip

	Running the Portal
	Conceiving and Designing a Cocoon Application

	Chapter 11. Designing Cocoon Applications
	The Application Concept
	General Functionality
	Application Architecture
	Performance and System Environment
	Presentation
	Know Your Content
	Document Your Data Sources
	Figure 11.1. Format transitions using stylesheets.

	Different Technologies
	Solving Problems

	Different Types of Applications
	Using Cocoon to Build Web Sites
	Network Publishing Applications
	Portals

	Summary

	Chapter 12. Cocoon: Weaving the Future
	The Evolving Cocoon Architecture
	Interpreted Sitemap
	Advanced Action-Sets and Multiactions
	Form Handling
	Modularization
	Pipeline Configuration

	Cocoon Usage Scenarios
	Authenticating the User
	The Cocoon Portal
	Figure 12.1. A Cocoon portal using additional components.

	Integrating XML Databases
	Content Management System

	Unraveling Cocoon

	Appendix A. Cocoon Components
	
	
	Table?A.1. Generators
	Table?A.2. Transformers
	Table?A.3. Serializers
	Table?A.4. Readers
	Table?A.5. Matchers
	Table?A.6. Selectors
	Table?A.7. Actions

	Common Components in cocoon.xconf
	The Parser
	The Stream Pipeline
	The Event Pipeline
	The Source Handler
	XSP Logic Sheets
	Data Sources

	Appendix B. Cocoon API Specifications
	Avalon Framework and LogKit
	Package org.apache.log
	Class Logger
	Methods
	Fields

	Package org.apache.avalon.framework.activity
	Interface Disposable
	Methods
	Interface Initializable
	Methods

	Package org.apache.avalon.framework.component
	Interface Component
	Interface ComponentManager
	Methods
	Interface ComponentSelector
	Inheritance
	Methods
	Interface Composable
	Methods
	Class ComponentException
	Inheritance
	Constructors

	Package org.apache.avalon.framework.configuration
	Interface Configurable
	Methods
	Interface Configuration
	Methods
	Class ConfigurationException
	Inheritance
	Constructors

	Package org.apache.avalon.framework.context
	Interface Context
	Methods
	Interface Contextualizable
	Methods
	Class ContextException
	Inheritance
	Constructors

	Package org.apache.avalon.framework.logger
	Interface Loggable
	Methods
	Abstract Class AbstractLoggable
	Inheritance
	Constructors
	Methods

	Package org.apache.avalon.framework.parameters
	Interface Parameterizable
	Methods
	Class Parameters
	Inheritance
	Constructors
	Methods
	Class ParameterException
	Inheritance
	Constructors

	Package org.apache.avalon.framework.thread
	Interface SingleThreaded
	Interface ThreadSafe

	Cocoon
	Package org.apache.cocoon
	Interface Constants
	Fields
	Interface Processor
	Methods
	Fields
	Class ProcessingException
	Inheritance
	Constructors
	Class ResourceNotFoundException
	Inheritance
	Constructors

	Package org.apache.cocoon.acting
	Interface Action
	Inheritance
	Methods
	Fields
	Abstract Class AbstractAction
	Inheritance
	Fields
	Abstract Class ComposerAction
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.caching
	Interface Cacheable
	Methods
	Interface CacheValidity
	Inheritance
	Methods
	Class AggregatedCacheValidity
	Inheritance
	Constructors
	Methods
	Class CompositeCacheValidity
	Inheritance
	Constructors
	Methods
	Class NOPCacheValidity
	Inheritance
	Class ParametersCacheValidity
	Inheritance
	Constructors
	Methods
	Class TimeStampCacheValidity
	Inheritance
	Constructors
	Methods

	Package org.apache.cocoon.components.parser
	Interface Parser
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.components.pipeline
	Interface EventPipeline
	Inheritance
	Methods
	Fields
	Interface StreamPipeline
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.components.source
	Interface SourceFactory
	Inheritance
	Methods

	Package org.apache.cocoon.environment
	Interface Context
	Methods
	Interface Cookie
	Methods
	Interface Environment
	Inheritance
	Methods
	Interface ModifiableSource
	Inheritance
	Methods
	Interface Redirector
	Methods
	Interface Request
	Methods
	Interface Response
	Methods
	Interface Session
	Methods
	Interface SourceResolver
	Methods
	Interface Source
	Inheritance
	Methods
	Class ObjectModelHelper
	Methods
	Fields

	Package org.apache.cocoon.generation
	Interface Generator
	Inheritance
	Methods
	Fields
	Abstract Class AbstractGenerator
	Interfaces
	Methods
	Fields
	Abstract Class ComposerGenerator
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.matching
	Interface Matcher
	Inheritance
	Methods
	Fields
	Interface PreparableMatcher
	Inheritance
	Methods

	Package org.apache.cocoon.reading
	Interface Reader
	Inheritance
	Methods
	Fields
	Abstract Class AbstractReader
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.selection
	Interface Selector
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.serialization
	Interface Serializer
	Inheritance
	Fields
	Abstract Class AbstractSerializer
	Inheritance
	Methods
	Fields
	Abstract Class AbstractTextSerializer
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.sitemap
	Interface SitemapModelComponent
	Inheritance
	Methods
	Interface SitemapOutputComponent
	Inheritance
	Methods
	Class Handler
	Inheritance
	Constructors
	Methods
	Class Manager
	Inheritance
	Methods

	Package org.apache.cocoon.transformation
	Interface Transformer
	Inheritance
	Fields
	Abstract Class AbstractTransformer
	Inheritance

	Package org.apache.cocoon.util
	Class HashUtil
	Methods

	Package org.apache.cocoon.xml
	Interface XMLConsumer
	Inheritance
	Interface XMLizable
	Methods
	Interface XMLPipe
	Inheritance
	Interface XMLProducer
	Methods
	Abstract Class AbstractXMLConsumer
	Inheritance
	Methods
	Abstract Class AbstractXMLPipe
	Inheritance
	Methods
	Abstract Class AbstractXMLProducer
	Inheritance
	Methods
	Fields

	Package org.apache.cocoon.xml.dom
	Interface DOMBuilder.Listener
	Methods
	Interface DOMFactory
	Methods
	Class DOMBuilder
	Inheritance
	Constructors
	Methods
	Fields
	Class DOMStreamer
	Inheritance
	Constructors
	Methods
	Fields

	SAX
	Package org.xml.sax
	Interface Attributes
	Methods
	Interface ContentHandler
	Methods
	Class InputSource
	Constructors
	Methods
	Class SAXException
	Inheritance
	Constructors
	Methods

	Package org.xml.sax.ext
	Interface LexicalHandler
	Methods

	Appendix C. Links on the Web
	Chapter 1, “An Introduction to Internet Applicati
	History of the Web
	Internet Timeline
	Introduction to CGI
	History of the Apache Server
	History of Microsoft’s IIS

	Chapter 2, “Building the Machine Web with XML”
	Introducing Tim Berners Lee
	W3C Home Page
	XML Specifications and Documentation
	XSLT Specification
	Xpath Specification
	Apache Xalan Project: Java Version
	Apache Xerces Project: Java Version
	LotusXSL and IBM XML4J
	Introduction to Native XML Databases
	List of XML Database Products
	Apache XML Database: Xindice (Formerly dbXML)
	Software AG Tamino XML Database
	Oracle and XML
	Moreover News Provider
	Apache Cocoon Project

	Chapter 3, “Getting Started with Cocoon”
	Cocoon Distribution Directory
	Sun Java SDK
	Apache Tomcat Servlet Engine Home Page
	Cocoon Mailing Lists
	Mailing Lists Archive
	Cocoon Frequently Asked Questions (FAQs)
	Information on Installing Cocoon
	Cocoon CVS

	Chapter 4, “Putting Cocoon to Work”
	Apache FOP Project Home Page
	Scalable Vector Graphics (SVG) Format
	Apache SVG Project
	XSL Formatting Objects
	JTidy Project

	Chapter 5, “Cocoon News Portal: Entry Version”
	Resource Description Framework (RDF) Specification
	RDF Site Summary Specification
	LinuxToday

	Chapter 7, “Cocoon News Portal: Extended Version”
	HSQL Database Project

	Chapter 8, “A Developer’s Look at the Cocoon Arch
	Apache Avalon Project
	Developing with Apache Avalon
	Software Design Patterns
	SAX Home Page

	Chapter 9, “Developing Components for Cocoon”
	JavaMail API
	JavaBeans Activation Framework

	Chapter 11, “Designing Cocoon Applications”
	XMLSpy
	XMetal
	CookTop

